A coarse-grained model of atactic polystyrene, in which meso and racemo diads are represented as single “superatoms,” parametrized using Iterative Boltzmann Inversion, has been subjected to connectivity-altering Monte Carlo simulations in order to simulate monodisperse atactic polystyrene melts of molar mass up to 210000 g mol-1 at 500 or 413 K and 1 bar. Analysis of the Monte Carlo results reveals excellent equilibration of chain conformations at all length scales. Chain dimensions, as determined from the mean square end-to-end distance, the mean square radius of gyration, and simulated Kratky plots of the single-chain scattering function, are in excellent agreement with experiment. The equilibrated long-chain configurations are reduced to entanglement networks via topological analysis with the CReTA algorithm. The resulting Kuhn length of primitive paths provides an excellent estimate of the molar mass between entanglements and of the entanglement tube diameter extracted from plateau modulus measurement...