Local Study of Planar Vector Fields: Singularities and Their Unfoldings

[1]  Floris Takens,et al.  Unfoldings of certain singularities of vectorfields: Generalized Hopf bifurcations , 1973 .

[2]  H. Broer,et al.  Formal normal form theorems for vector fields and some consequences for bifurcations in the volume preserving case , 1981 .

[3]  M. Brunella,et al.  Topological equivalence of a plane vector field with its principal part defined through Newton Polyhedra , 1990 .

[4]  J. Sotomayor,et al.  GENERIC 3-PARAMETER FAMILIES OF PLANAR VECTOR-FIELDS, UNFOLDINGS OF SADDLE, FOCUS AND ELLIPTIC-SINGULARITIES WITH NILPOTENT LINEAR PARTS , 1991 .

[5]  Floris Takens,et al.  Singularities of vector fields , 1974 .

[6]  Freddy Dumortier,et al.  Cubic Lienard equations with linear damping , 1990 .

[7]  Jorge Sotomayor,et al.  Generic one-parameter families of vector fields on two-dimensional manifolds , 1968 .

[8]  G. Belitskii,et al.  EQUIVALENCE AND NORMAL FORMS OF GERMS OF SMOOTH MAPPINGS , 1978 .

[9]  Freddy Dumortier,et al.  Generic 3-parameter families of vector fields on the plane, unfolding a singularity with nilpotent linear part. The cusp case of codimension 3 , 1987, Ergodic Theory and Dynamical Systems.

[10]  Y. Ilyashenko,et al.  Limit cycles of polynomial vector fields with nondegenerate singular points on the real plane , 1984 .

[11]  M. Shub,et al.  Linearization of normally hyperbolic diffeomorphisms and flows , 1970 .

[12]  Floris Takens,et al.  Bifurcations and stability of families of diffeomorphisms , 1983 .

[13]  Freddy Dumortier,et al.  Singularities of vector fields on the plane , 1977 .

[14]  Shlomo Sternberg,et al.  On the Structure of Local Homeomorphisms of Euclidean n-Space, II , 1958 .

[15]  F. Dumortier Non-stabilisable jets of diffeomorphisms in R2 and of vector fields in R3 , 1986 .

[16]  J. Ecalle,et al.  Finitude des cycles-limites et accelero-sommation de l’application de retour , 1990 .

[17]  Shi Songling,et al.  On the structure of Poincaré-Lyapunov constants for the weak focus of polynomial vector fields , 1984 .

[18]  Freddy Dumortier,et al.  Smooth invariant curves for germs of vector fields in R3 whose linear part generates a rotation , 1986 .

[19]  F. Takens,et al.  Topological equivalence of normally hyperbolic dynamical systems , 1977 .

[20]  F. Dumortier,et al.  Singularities of vector fields on ℝ3 determined by their first non-vanishing jet , 1989, Ergodic Theory and Dynamical Systems.

[21]  Wolfgang Hahn,et al.  Stability of Motion , 1967 .

[22]  P. Coullet,et al.  A simple global characterization for normal forms of singular vector fields , 1987 .

[23]  L. Perko Rotated vector fields and the global behavior of limit cycles for a class of quadratic systems in the plane , 1975 .