In-operando observation of microstructural evolution in a solid oxide cell electrolyte operating at high polarization

[1]  H. Poulsen,et al.  X‐ray diffraction microscopy based on refractive optics , 2017 .

[2]  P. Hendriksen,et al.  Oxygen permeation flux through 10Sc1YSZ-MnCo2O4 asymmetric membranes prepared by two-step sintering , 2016 .

[3]  H. Poulsen,et al.  Multiscale 3D characterization with dark-field x-ray microscopy , 2016 .

[4]  Mogens Bjerg Mogensen,et al.  Understanding degradation of solid oxide electrolysis cells through modeling of electrochemical potential profiles , 2016 .

[5]  H. Poulsen,et al.  Dark field X-ray microscopy for studies of recrystallization , 2015 .

[6]  S. Jensen,et al.  Eliminating degradation in solid oxide electrochemical cells by reversible operation. , 2015, Nature Materials.

[7]  V. A. Eremin,et al.  Particle Coarsening Influence on Oxygen Reduction in LSM–YSZ Composite Materials , 2015 .

[8]  W. Ludwig,et al.  Dark-field X-ray microscopy for multiscale structural characterization , 2015, Nature Communications.

[9]  Mogens Bjerg Mogensen,et al.  High temperature electrolysis in alkaline cells, solid proton conducting cells, and solid oxide cells. , 2014, Chemical reviews.

[10]  V. Kharton,et al.  Analysis of electric properties of ZrO2-Y2O3 single crystals using teraherz IR and impedance spectroscopy techniques , 2014, Russian Journal of Electrochemistry.

[11]  P. Hendriksen,et al.  Durability of Solid Oxide Electrolysis Cell and Interconnects for Steam Electrolysis , 2013 .

[12]  K. Yoon,et al.  Degradation mechanism of electrolyte and air electrode in solid oxide electrolysis cells operating at high polarization , 2013 .

[13]  F. Tietz,et al.  Degradation phenomena in a solid oxide electrolysis cell after 9000 h of operation , 2013 .

[14]  Bilge Yildiz,et al.  Understanding Chemical Expansion in Non‐Stoichiometric Oxides: Ceria and Zirconia Case Studies , 2012 .

[15]  J. Kilner,et al.  Electrolyte degradation in anode supported microtubular yttria stabilized zirconia-based solid oxide , 2011 .

[16]  S. Jiang,et al.  Failure mechanism of (La,Sr)MnO 3 oxygen electrodes of solid oxide electrolysis cells , 2011 .

[17]  A. Virkar Mechanism of oxygen electrode delamination in solid oxide electrolyzer cells , 2010 .

[18]  S. Ebbesen,et al.  Solid Oxide Electrolysis Cells: Degradation at High Current Densities , 2010 .

[19]  H. Fukuyama,et al.  Influence of oxygen partial pressure on surface tension of molten silver , 2010 .

[20]  Albert Cirera,et al.  YSZ-Based Oxygen Sensors and the Use of Nanomaterials: A Review from Classical Models to Current Trends , 2009, J. Sensors.

[21]  John B. Goodenough,et al.  Solid Oxide Fuel Cell Technology: Principles, Performance and Operations , 2009 .

[22]  T. Jacobsen,et al.  The Course of Oxygen Partial Pressure and Electric Potentials across an Oxide Electrolyte Cell , 2008 .

[23]  John T. S. Irvine,et al.  Investigation of scandia–yttria–zirconia system as an electrolyte material for intermediate temperature fuel cells—influence of yttria content in system (Y2O3)x(Sc2O3)(11−x)(ZrO2)89 , 2004 .

[24]  Mogens Bjerg Mogensen,et al.  Impedance of Solid Oxide Fuel Cell LSM/YSZ Composite Cathodes , 2001 .

[25]  J. T. Brown Solid oxide fuel cell technology , 1988 .

[26]  Mel I. Mendelson,et al.  Average Grain Size in Polycrystalline Ceramics , 1969 .

[27]  R. Ruh,et al.  Nonstoichiometry of ZrO2 and Its Relation to Tetragonal‐Cubic Inversion in ZrO2 , 1967 .

[28]  A. Mai,et al.  High temperature mechanical properties of zirconia tapes used for electrolyte supported solid oxide fuel cells , 2015 .

[29]  M. Somer,et al.  Preparation of Yttria-Stabilized Zirconia by the Reverse Microemulsion Method and the Effect of Sc and Ce Doping on Microstructure and Ionic Conductivity for Solid Oxide Fuel Cell Applications , 2011 .

[30]  J. Irvine,et al.  Co-doping of scandia-zirconia electrolytes for SOFCs. , 2007, Faraday discussions.