Intermixing of InGaAs quantum dots grown by cycled monolayer deposition

We investigate the thermal induced intermixing and the diffusion kinetics of InGaAs quantum dots grown by cycled monolayer deposition subjected to the overgrowth and ex situ annealing. The group-III intermixing, that obeys the Fickian law, reaches a steady state after ex situ annealing up to 850°C. An identical activation energy (Ea=1.5±0.3eV) obtained with and without subjecting to overgrowth implies that the intermixing is primarily governed by the dynamic annealing of intrinsic defects during the epitaxial overgrowth. The intrinsic intermixing is attributed to the instability of the interface morphology driven by the atomic migration during self-formation of quantum dot.

[1]  M. Lipinski,et al.  Strain-induced material intermixing of InAs quantum dots in GaAs , 2000 .

[2]  S. Chua,et al.  Effects of rapid thermal annealing on structure and luminescence of self-assembled InAs/GaAs quantum dots , 1998 .

[3]  M. Pate,et al.  Tuning self-assembled InAs quantum dots by rapid thermal annealing , 1997 .

[4]  J. Jasinski,et al.  Rapid thermal annealing of InAs/GaAs quantum dots under a GaAs proximity cap , 2001 .

[5]  I. Bradley,et al.  The effects of ion implantation on the interdiffusion coefficients in InxGa1−xAs/GaAs quantum well structures , 1993 .

[6]  Z. G. Wang,et al.  Effects of annealing on self-organized InAs quantum islands on GaAs(100) , 1998 .

[7]  P. Frigeri,et al.  Vertically stacked quantum dots grown by ALMBE and MBE , 1999 .

[8]  Bauer,et al.  Nanometer-scale resolution of strain and interdiffusion in self-assembled InAs/GaAs quantum dots , 2000, Physical review letters.

[9]  V. Aimez,et al.  Origin of the inhomogenous broadening and alloy intermixing in InAs/GaAs self-assembled quantum dots , 2000 .

[10]  W. Gillin,et al.  Interdiffusion: A probe of vacancy diffusion in III-V materials , 1997 .

[11]  P. Bhattacharya,et al.  Structural and luminescence characteristics of cycled submonolayer InAs/GaAs quantum dots with room-temperature emission at 1.3 μm , 1999 .

[12]  D. Deppe,et al.  1.3 μm room-temperature GaAs-based quantum-dot laser , 1998 .

[13]  V. Tokranov,et al.  In situ monitoring of formation of InAs quantum dots and overgrowth by GaAs or AlAs , 2005 .

[14]  H. S. Djie,et al.  Electronics states of interdiffused quantum dots , 2005 .

[15]  D. Dunstan,et al.  Interdiffusion in InGaAs/GaAs quantum well structures as a function of depth , 1993 .

[16]  Tae Whan Kim,et al.  Effect of thermal annealing on the microstructural and optical properties of vertically stacked InAs/GaAs quantum dots embedded in modulation-doped heterostructures , 2003 .

[17]  Diana L. Huffaker,et al.  Room-temperature continuous-wave operation of a single-layered 1.3 μm quantum dot laser , 1999 .

[18]  P. Bhattacharya,et al.  Influence of rapid thermal annealing on a 30 stack InAs/GaAs quantum dot infrared photodetector , 2003 .

[19]  N. Yokoyama,et al.  1.3-μm CW lasing of InGaAs-GaAs quantum dots at room temperature with a threshold current of 8 mA , 1999, IEEE Photonics Technology Letters.

[20]  Axel Lorke,et al.  Intermixing and shape changes during the formation of InAs self-assembled quantum dots , 1997 .

[21]  Yasuhiko Arakawa,et al.  1.28μm lasing from stacked InAs∕GaAs quantum dots with low-temperature-grown AlGaAs cladding layer by metalorganic chemical vapor deposition , 2005 .

[22]  P. Koenraad,et al.  Evidence for strain in and around InAs quantum dots in GaAs from ion-channeling experiments , 2000 .

[23]  M. Melloch,et al.  Diffusivity transients and radiative recombination in intermixed In{sub 0.5}Ga{sub 0.5}As/GaAs quantum structures , 1997 .

[24]  C. P. Lee,et al.  Compositional disordering of InGaAs/GaAs heterostructures by low-temperature-grown GaAs layers , 1996 .

[25]  M. Sugawara,et al.  Self-Formed In0.5Ga0.5As Quantum Dots on GaAs Substrates Emitting at 1.3 µm , 1994 .

[26]  N. Ledentsov,et al.  Structural and optical properties of InAs–GaAs quantum dots subjected to high temperature annealing , 1996 .

[27]  Nikolai N. Ledentsov,et al.  Quantum dot heterostructures , 1999 .