Rational design of robust biomolecular circuits: from specification to parameters

Despite the early success stories synthetic biology, the development of larger, more complex synthetic systems necessitates the use of appropriate design methodologies. In particular, the integration of smaller circuits in order to perform complex tasks remains one of the most important challenges faced in synthetic biology. We propose here a methodology to determine the region in the parameter space where a given dynamical model works as desired. It is based on the inverse problem of finding parameter sets that exhibit the specified behavior for a defined topology. The main issue we face is that such inverse mapping is highly expansive and suffers from instability: small changes in the specified dynamic property could lead to large deviations in the parameters for the identified models. To solve this issue, we discuss regularized maps complemented by local analysis. With a stabilized inversion map, small neighborhoods in the property space are mapped to small neighborhoods in the parameter space, thereby finding parameter vectors that are robust to the problem specification. To specify dynamic circuit properties we discuss Linear Temporal Logic (LTL). We apply these concepts to two models of the cyanobacterial circadian oscillation.

[1]  Amir Pnueli,et al.  The temporal logic of programs , 1977, 18th Annual Symposium on Foundations of Computer Science (sfcs 1977).

[2]  A. Goldbeter,et al.  Robustness of circadian rhythms with respect to molecular noise , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[3]  John C. Doyle,et al.  Surviving heat shock: control strategies for robustness and performance. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[4]  S. Golden,et al.  A cyanobacterial circadian timing mechanism. , 2003, Annual review of genetics.

[5]  R Heinrich,et al.  Analysing the robustness of cellular rhythms. , 2005, Systems biology.

[6]  R. Weiss,et al.  Artificial cell-cell communication in yeast Saccharomyces cerevisiae using signaling elements from Arabidopsis thaliana , 2005, Nature Biotechnology.

[7]  M. Fussenegger,et al.  An engineered epigenetic transgene switch in mammalian cells , 2004, Nature Biotechnology.

[8]  J. Stelling,et al.  Robustness of Cellular Functions , 2004, Cell.

[9]  George J. Pappas,et al.  Robust Sampling for MITL Specifications , 2007, FORMATS.

[10]  A. Arkin,et al.  Stochastic mechanisms in gene expression. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[11]  M. Bennett,et al.  A fast, robust, and tunable synthetic gene oscillator , 2008, Nature.

[12]  Michael J Rust,et al.  References and Notes Supporting Online Material Materials and Methods Figs. S1 to S8 Tables S1 to S3 References Ordered Phosphorylation Governs Oscillation of a Three-protein Circadian Clock , 2022 .

[13]  W. Hoeffding Probability Inequalities for sums of Bounded Random Variables , 1963 .

[14]  Albert Goldbeter,et al.  Circadian rhythms and molecular noise. , 2006, Chaos.

[15]  Martin A. Nowak,et al.  Evolution of genetic redundancy , 1997, Nature.

[16]  T. Kondo,et al.  Reconstitution of Circadian Oscillation of Cyanobacterial KaiC Phosphorylation in Vitro , 2005, Science.

[17]  Hanspeter Herzel,et al.  Functioning and robustness of a bacterial circadian clock , 2007, Molecular systems biology.

[18]  M. K rn,et al.  Stochastic Optimal Control , 1988 .

[19]  Michelle Girvan,et al.  Optimal design, robustness, and risk aversion. , 2002, Physical review letters.

[20]  Viktor Kuncak,et al.  Synthesis for regular specifications over unbounded domains , 2010, Formal Methods in Computer Aided Design.

[21]  J. Stelling,et al.  Robustness properties of circadian clock architectures. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[22]  Noam Chomsky,et al.  Three models for the description of language , 1956, IRE Trans. Inf. Theory.

[23]  S. Golden,et al.  Resonating circadian clocks enhance fitness in cyanobacteria. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[24]  M. Thattai,et al.  Intrinsic noise in gene regulatory networks , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[25]  H. Engl,et al.  Regularization of Inverse Problems , 1996 .

[26]  Priscilla E. M. Purnick,et al.  The second wave of synthetic biology: from modules to systems , 2009, Nature Reviews Molecular Cell Biology.

[27]  Stanislas Leibler,et al.  Resilient circadian oscillator revealed in individual cyanobacteria , 2004, Nature.

[28]  John Doyle,et al.  Supplementary Notes: Elementary Feedback Concepts , 2005 .

[29]  C. Johnson Global orchestration of gene expression by the biological clock of cyanobacteria , 2004, Genome Biology.

[30]  F. Allgöwer,et al.  Robustness properties of apoptosis models with respect to parameter variations and intrinsic noise. , 2005, Systems biology.

[31]  Martin Egli,et al.  Structural model of the circadian clock KaiB–KaiC complex and mechanism for modulation of KaiC phosphorylation , 2008, The EMBO journal.

[32]  Hana El-Samad,et al.  Regulated degradation is a mechanism for suppressing stochastic fluctuations in gene regulatory networks. , 2006, Biophysical journal.

[33]  Marta Kwiatkowska,et al.  PCTL model checking of symbolic probabilistic systems , 2003 .

[34]  Daniel Kroening,et al.  A Survey of Automated Techniques for Formal Software Verification , 2008, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[35]  Carmen G. Moles,et al.  Parameter estimation in biochemical pathways: a comparison of global optimization methods. , 2003, Genome research.

[36]  Helmut Veith,et al.  25 Years of Model Checking - History, Achievements, Perspectives , 2008, 25 Years of Model Checking.

[37]  H. Kitano Towards a theory of biological robustness , 2007, Molecular systems biology.

[38]  Marc Hafner,et al.  Efficient characterization of high-dimensional parameter spaces for systems biology , 2011, BMC Systems Biology.

[39]  A. Cornish-Bowden Fundamentals of Enzyme Kinetics , 1979 .

[40]  Bryan C. Daniels,et al.  Sloppiness, robustness, and evolvability in systems biology. , 2008, Current opinion in biotechnology.

[41]  François Fages,et al.  On temporal logic constraint solving for analyzing numerical data time series , 2008, Theor. Comput. Sci..

[42]  François Fages,et al.  BIOCHAM: an environment for modeling biological systems and formalizing experimental knowledge , 2006, Bioinform..

[43]  I. Daubechies,et al.  An iterative thresholding algorithm for linear inverse problems with a sparsity constraint , 2003, math/0307152.

[44]  Peter Ruoff,et al.  Circadian Rhythmicity by Autocatalysis , 2006, PLoS Comput. Biol..

[45]  William H. Press,et al.  Numerical recipes in C. The art of scientific computing , 1987 .

[46]  Rudiyanto Gunawan,et al.  Circadian rhythm: A natural, robust, multi-scale control system , 2006, Comput. Chem. Eng..

[47]  Heinz Koeppl,et al.  ‘Glocal’ Robustness Analysis and Model Discrimination for Circadian Oscillators , 2009, PLoS Comput. Biol..

[48]  Clemens Zarzer On Tikhonov regularization with non-convex sparsity constraints , 2009 .

[49]  A. Wagner Robustness against mutations in genetic networks of yeast , 2000, Nature Genetics.

[50]  Francis J. Doyle,et al.  Quantitative performance metrics for robustness in circadian rhythms , 2007, Bioinform..

[51]  P. Swain,et al.  Intrinsic and extrinsic contributions to stochasticity in gene expression , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[52]  Ron Weiss,et al.  Engineered Communications for Microbial Robotics , 2000, DNA Computing.

[53]  J. Stelling,et al.  A tunable synthetic mammalian oscillator , 2009, Nature.

[54]  Martin Fussenegger,et al.  A synthetic metabolite-based mammalian inter-cell signaling system. , 2009, Molecular bioSystems.

[55]  Robert Balzer,et al.  A 15 Year Perspective on Automatic Programming , 1985, IEEE Transactions on Software Engineering.

[56]  D. Rand,et al.  Uncovering the design principles of circadian clocks: mathematical analysis of flexibility and evolutionary goals. , 2006, Journal of theoretical biology.

[57]  Abbas Edalat,et al.  Bisimulation for Labelled Markov Processes , 2002, Inf. Comput..

[58]  Toshifumi Takao,et al.  A sequential program of dual phosphorylation of KaiC as a basis for circadian rhythm in cyanobacteria , 2007, The EMBO journal.

[59]  John Doyle,et al.  Complexity and robustness , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[60]  J. Collins,et al.  Construction of a genetic toggle switch in Escherichia coli , 2000, Nature.

[61]  M. Elowitz,et al.  A synthetic oscillatory network of transcriptional regulators , 2000, Nature.

[62]  Pamela A Silver,et al.  Intron length increases oscillatory periods of gene expression in animal cells. , 2008, Genes & development.

[63]  J. Doyle,et al.  Robustness as a measure of plausibility in models of biochemical networks. , 2002, Journal of theoretical biology.

[64]  Eduardo D. Sontag,et al.  Shape, Size, and Robustness: Feasible Regions in the Parameter Space of Biochemical Networks , 2007, PLoS Comput. Biol..

[65]  Peter Ruoff,et al.  Introducing temperature‐compensation in any reaction kinetic oscillator model , 1992 .

[66]  Keinosuke Fukunaga,et al.  Introduction to Statistical Pattern Recognition , 1972 .

[67]  Martin Egli,et al.  Elucidating the Ticking of an In Vitro Circadian Clockwork , 2007, PLoS biology.