The neocortical microcircuit as a tabula rasa.

The neocortex has a high capacity for plasticity. To understand the full scope of this capacity, it is essential to know how neurons choose particular partners to form synaptic connections. By using multineuron whole-cell recordings and confocal microscopy we found that axons of layer V neocortical pyramidal neurons do not preferentially project toward the dendrites of particular neighboring pyramidal neurons; instead, axons promiscuously touch all neighboring dendrites without any bias. Functional synaptic coupling of a small fraction of these neurons is, however, correlated with the existence of synaptic boutons at existing touch sites. These data provide the first direct experimental evidence for a tabula rasa-like structural matrix between neocortical pyramidal neurons and suggests that pre- and postsynaptic interactions shape the conversion between touches and synapses to form specific functional microcircuits. These data also indicate that the local neocortical microcircuit has the potential to be differently rewired without the need for remodeling axonal or dendritic arbors.

[1]  N. V. Swindale,et al.  Dendritic spines only connect , 1981, Trends in Neurosciences.

[2]  Alan Peters,et al.  Cellular components of the cerebral cortex , 1984 .

[3]  J. Bolz,et al.  Morphology of identified projection neurons in layer 5 of rat visual cortex , 1988, Neuroscience Letters.

[4]  E. White Cortical Circuits: Synaptic Organization of the Cerebral Cortex , 1989 .

[5]  M. Merzenich,et al.  Functional reorganization of primary somatosensory cortex in adult owl monkeys after behaviorally controlled tactile stimulation. , 1990, Journal of neurophysiology.

[6]  D. Faber,et al.  Applicability of the coefficient of variation method for analyzing synaptic plasticity. , 1991, Biophysical journal.

[7]  K. Stratford,et al.  Synaptic transmission between individual pyramidal neurons of the rat visual cortex in vitro , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[8]  M. Mishkin,et al.  Massive cortical reorganization after sensory deafferentation in adult macaques. , 1991, Science.

[9]  E. Kandel,et al.  Structural changes accompanying memory storage. , 1993, Annual review of physiology.

[10]  J. Deuchars,et al.  Large, deep layer pyramid-pyramid single axon EPSPs in slices of rat motor cortex display paired pulse and frequency-dependent depression, mediated presynaptically and self-facilitation, mediated postsynaptically. , 1993, Journal of neurophysiology.

[11]  C. Blakemore,et al.  Single-fibre EPSPs in layer 5 of rat visual cortex in vitro. , 1993, Neuroreport.

[12]  S. B. Kater,et al.  Dendritic spines: cellular specializations imparting both stability and flexibility to synaptic function. , 1994, Annual review of neuroscience.

[13]  J Deuchars,et al.  Relationships between morphology and physiology of pyramid‐pyramid single axon connections in rat neocortex in vitro. , 1994, The Journal of physiology.

[14]  J. Isaac,et al.  Evidence for silent synapses: Implications for the expression of LTP , 1995, Neuron.

[15]  R. Malinow,et al.  Activation of postsynaptically silent synapses during pairing-induced LTP in CA1 region of hippocampal slice , 1995, Nature.

[16]  Xiaoqin Wang,et al.  Remodelling of hand representation in adult cortex determined by timing of tactile stimulation , 1995, Nature.

[17]  H. Markram,et al.  Frequency and Dendritic Distribution of Autapses Established by Layer 5 Pyramidal Neurons in the Developing Rat Neocortex: Comparison with Synaptic Innervation of Adjacent Neurons of the Same Class , 1996, The Journal of Neuroscience.

[18]  Stephen J. Smith,et al.  Evidence for a Role of Dendritic Filopodia in Synaptogenesis and Spine Formation , 1996, Neuron.

[19]  E. Kandel,et al.  Toward a molecular definition of long-term memory storage. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[20]  H. Markram,et al.  The neural code between neocortical pyramidal neurons depends on neurotransmitter release probability. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[21]  N. Seidah,et al.  Regulation by gastric acid of the processing of progastrin‐derived peptides in rat antral mucosa , 1997, The Journal of physiology.

[22]  H. Markram A network of tufted layer 5 pyramidal neurons. , 1997, Cerebral cortex.

[23]  J. Deuchars,et al.  Synaptic interactions in neocortical local circuits: dual intracellular recordings in vitro. , 1997, Cerebral cortex.

[24]  H. Markram,et al.  Physiology and anatomy of synaptic connections between thick tufted pyramidal neurones in the developing rat neocortex. , 1997, The Journal of physiology.

[25]  P. Somogyi,et al.  Salient features of synaptic organisation in the cerebral cortex 1 Published on the World Wide Web on 3 March 1998. 1 , 1998, Brain Research Reviews.

[26]  S. Rumpel,et al.  Silent Synapses in the Developing Rat Visual Cortex: Evidence for Postsynaptic Expression of Synaptic Plasticity , 1998, The Journal of Neuroscience.

[27]  J. Kaas,et al.  Large-scale sprouting of cortical connections after peripheral injury in adult macaque monkeys. , 1998, Science.

[28]  Prof. Dr. Dr. Valentino Braitenberg,et al.  Cortex: Statistics and Geometry of Neuronal Connectivity , 1998, Springer Berlin Heidelberg.

[29]  K. Svoboda,et al.  Rapid dendritic morphogenesis in CA1 hippocampal dendrites induced by synaptic activity. , 1999, Science.

[30]  Henry Markram,et al.  Anatomical and functional differentiation of glutamatergic synaptic innervation in the neocortex , 1999, Journal of Physiology-Paris.

[31]  F. Engert,et al.  Dendritic spine changes associated with hippocampal long-term synaptic plasticity , 1999, Nature.

[32]  D. Chklovskii,et al.  Optimal sizes of dendritic and axonal arbors in a topographic projection. , 1999, Journal of neurophysiology.

[33]  K. Svoboda,et al.  Experience-dependent plasticity of dendritic spines in the developing rat barrel cortex in vivo , 2000, Nature.

[34]  Bernhard Hellwig,et al.  A quantitative analysis of the local connectivity between pyramidal neurons in layers 2/3 of the rat visual cortex , 2000, Biological Cybernetics.

[35]  O. Bozdagi,et al.  Increasing Numbers of Synaptic Puncta during Late-Phase LTP N-Cadherin Is Synthesized, Recruited to Synaptic Sites, and Required for Potentiation , 2000, Neuron.

[36]  David R. Colman,et al.  Molecular Modification of N-Cadherin in Response to Synaptic Activity , 2000, Neuron.

[37]  D. Wilkin,et al.  Neuron , 2001, Brain Research.

[38]  Bartlett W. Mel,et al.  Impact of Active Dendrites and Structural Plasticity on the Memory Capacity of Neural Tissue , 2001, Neuron.

[39]  R. Yuste,et al.  Morphological changes in dendritic spines associated with long-term synaptic plasticity. , 2001, Annual review of neuroscience.

[40]  R. Douglas,et al.  Chance or design? Some specific considerations concerning synaptic boutons in cat visual cortex , 2002, Journal of neurocytology.

[41]  Dmitri B. Chklovskii,et al.  Wiring Optimization in Cortical Circuits , 2002, Neuron.

[42]  K. Svoboda,et al.  Long-term in vivo imaging of experience-dependent synaptic plasticity in adult cortex , 2002, Nature.

[43]  K. Svoboda,et al.  Structure and function of dendritic spines. , 2002, Annual review of physiology.

[44]  D. Chklovskii,et al.  Geometry and Structural Plasticity of Synaptic Connectivity , 2002, Neuron.

[45]  Rafael Yuste,et al.  Spine Motility Phenomenology, Mechanisms, and Function , 2002, Neuron.

[46]  N. Kasthuri,et al.  Long-term dendritic spine stability in the adult cortex , 2002, Nature.

[47]  Henry Markram,et al.  Deriving physical connectivity from neuronal morphology , 2003, Biological Cybernetics.

[48]  Rafael Yuste,et al.  Quantitative morphologic classification of layer 5 neurons from mouse primary visual cortex , 2003, The Journal of comparative neurology.

[49]  R. Silver,et al.  High-Probability Uniquantal Transmission at Excitatory Synapses in Barrel Cortex , 2003, Science.

[50]  A. Thomson,et al.  Interlaminar connections in the neocortex. , 2003, Cerebral cortex.

[51]  N. Syed,et al.  Synaptogenesis in the CNS: An Odyssey from Wiring Together to Firing Together , 2003, The Journal of physiology.

[52]  D. Chklovskii,et al.  Class-Specific Features of Neuronal Wiring , 2004, Neuron.

[53]  Christopher Cherniak,et al.  Local optimization of neuron arbors , 1992, Biological Cybernetics.

[54]  Ad Aertsen,et al.  Synapses on axon collaterals of pyramidal cells are spaced at random intervals: a Golgi study in the mouse cerebral cortex , 1994, Biological Cybernetics.

[55]  Y. Jan,et al.  The immunoglobulin family member dendrite arborization and synapse maturation 1 (Dasm1) controls excitatory synapse maturation. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[56]  T. Kosaka,et al.  Quantitative analysis of neurons and glial cells in the rat somatosensory cortex, with special reference to GABAergic neurons and parvalbumin-containing neurons , 2004, Experimental Brain Research.

[57]  T. Yin,et al.  Visual response properties of neurons in the middle and lateral suprasylvian cortices of the behaving cat , 2005, Experimental Brain Research.