Bijective spherical parametrization with low distortion

Abstract Computing a bijective spherical parametrization of a genus-0 surface with low distortion is a fundamental task in geometric modeling and processing. Current methods for spherical parametrization cannot, in general, control the worst case distortion of all triangles nor guarantee bijectivity. Given an initial bijective spherical parametrization, with high distortion, we develop a non-linear constrained optimization problem to refine it, with objective penalizing the presence of triangles degeneration and maximal distortion. By using a dynamic adjusting parameter and a constrained, iterative inexact block coordinate descent optimization method, we efficiently and robustly achieve a bijective and low distortion parametrization with an optimal sphere radius. Compared to the state-of-the-art methods, our method is robust to initial parametrization and not sensitive to parameter choice. We demonstrate that our method produces excellent results on numerous models undergoing simple to complex shapes, in comparison to several state-of-the-art methods.

[1]  Denis Zorin,et al.  Locally injective parametrization with arbitrary fixed boundaries , 2014, ACM Trans. Graph..

[2]  Yaron Lipman,et al.  Bijective Mappings of Meshes with Boundary and the Degree in Mesh Processing , 2013, SIAM J. Imaging Sci..

[3]  Michael S. Floater,et al.  One-to-one piecewise linear mappings over triangulations , 2003, Math. Comput..

[4]  Marc Alexa,et al.  As-rigid-as-possible surface modeling , 2007, Symposium on Geometry Processing.

[5]  T. Banchoff,et al.  Differential Geometry of Curves and Surfaces , 2010 .

[6]  Kai Hormann,et al.  Surface Parameterization: a Tutorial and Survey , 2005, Advances in Multiresolution for Geometric Modelling.

[7]  Yalin Wang,et al.  Optimal global conformal surface parameterization , 2004, IEEE Visualization 2004.

[8]  Yaron Lipman,et al.  Bounded distortion mapping spaces for triangular meshes , 2012, ACM Trans. Graph..

[9]  Ulrich Pinkall,et al.  Computing Discrete Minimal Surfaces and Their Conjugates , 1993, Exp. Math..

[10]  Zheng Liu,et al.  As-rigid-as-possible spherical parametrization , 2014, Graph. Model..

[11]  Christian Rössl,et al.  Curvilinear Spherical Parameterization , 2006, IEEE International Conference on Shape Modeling and Applications 2006 (SMI'06).

[12]  Reinhard Klein,et al.  An Adaptable Surface Parameterization Method , 2003, IMR.

[13]  Pierre Poulin,et al.  As-conformal-as-possible discrete volumetric mapping , 2012, Comput. Graph..

[14]  P. Knupp Achieving finite element mesh quality via optimization of the jacobian matrix norm and associated qu , 2000 .

[15]  Olga Sorkine-Hornung,et al.  Locally Injective Mappings , 2013 .

[16]  Dani Lischinski,et al.  Bounded-distortion piecewise mesh parameterization , 2002, IEEE Visualization, 2002. VIS 2002..

[17]  W. T. Tutte How to Draw a Graph , 1963 .

[18]  Ronen Basri,et al.  Large-scale bounded distortion mappings , 2015, ACM Trans. Graph..

[19]  K. Hormann,et al.  MIPS: An Efficient Global Parametrization Method , 2000 .

[20]  Todd S. Munson,et al.  A comparison of two optimization methods for mesh quality improvement , 2005, Engineering with Computers.

[21]  Jia-Guang Sun,et al.  An octree-based proxy for collision detection in large-scale particle systems , 2012, Science China Information Sciences.

[22]  Ioannis Fudos,et al.  Parallel computation of spherical parameterizations for mesh analysis , 2011, Comput. Graph..

[23]  Takeo Igarashi,et al.  As-rigid-as-possible shape manipulation , 2005, ACM Trans. Graph..

[24]  L. Freitag,et al.  Tetrahedral mesh improvement via optimization of the element condition number , 2002 .

[25]  Alla Sheffer,et al.  Practical spherical embedding of manifold triangle meshes , 2005, International Conference on Shape Modeling and Applications 2005 (SMI' 05).

[26]  Hong Qin,et al.  Curves-on-Surface: A General Shape Comparison Framework , 2006, IEEE International Conference on Shape Modeling and Applications 2006 (SMI'06).

[27]  Zhouwang Yang,et al.  Spherical parametrization of genus-zero meshes by minimizing discrete harmonic energy , 2006 .

[28]  Hongyuan Zha,et al.  Simple and effective variational optimization of surface and volume triangulations , 2010, Engineering with Computers.

[29]  Ligang Liu,et al.  A Local/Global Approach to Mesh Parameterization , 2008, Comput. Graph. Forum.

[30]  Nira Dyn,et al.  Robust Spherical Parameterization of Triangular Meshes , 2004, Computing.

[31]  Ronen Basri,et al.  Controlling singular values with semidefinite programming , 2014, ACM Trans. Graph..

[32]  Yaron Lipman,et al.  Injective and bounded distortion mappings in 3D , 2013, ACM Trans. Graph..

[33]  Baining Guo,et al.  Computing locally injective mappings by advanced MIPS , 2015, ACM Trans. Graph..

[34]  I. Holopainen Riemannian Geometry , 1927, Nature.

[35]  Yao Jin,et al.  Remeshing‐assisted Optimization for Locally Injective Mappings , 2014, Comput. Graph. Forum.

[36]  Hongdong Li,et al.  Conformal spherical representation of 3D genus-zero meshes , 2007, Pattern Recognit..

[37]  Marc Alexa,et al.  As-rigid-as-possible shape interpolation , 2000, SIGGRAPH.

[38]  Scott Schaefer,et al.  Bijective parameterization with free boundaries , 2015, ACM Trans. Graph..

[39]  Alla Sheffer,et al.  Fundamentals of spherical parameterization for 3D meshes , 2003, ACM Trans. Graph..

[40]  Leonidas J. Guibas,et al.  As‐Killing‐As‐Possible Vector Fields for Planar Deformation , 2011, Comput. Graph. Forum.

[41]  Todd S. Munson,et al.  Mesh shape-quality optimization using the inverse mean-ratio metric , 2007, Math. Program..

[42]  S. Yau,et al.  Global conformal surface parameterization , 2003 .

[43]  Wotao Yin,et al.  A Block Coordinate Descent Method for Regularized Multiconvex Optimization with Applications to Nonnegative Tensor Factorization and Completion , 2013, SIAM J. Imaging Sci..

[44]  Mathieu Desbrun,et al.  Unconstrained Spherical Parameterization , 2007, J. Graph. Tools.

[45]  T. Chan,et al.  Genus zero surface conformal mapping and its application to brain surface mapping. , 2004, IEEE transactions on medical imaging.

[46]  P. Knupp,et al.  Triangular and quadrilateral surface mesh quality optimization using local parametrization , 2004 .

[47]  Hongchao Zhang,et al.  An efficient spherical mapping algorithm and its application on spherical harmonics , 2013, Science China Information Sciences.