Fabrication of diffraction-encoded micro-particles using nano-imprint lithography

A nano-imprint lithography technique is described for the fabrication of optically encoded micro-particles (diffractive barcodes). The particles are fabricated from SU8—a material which can be processed lithographically, and which can be used for the attachment of molecular tags. The barcodes are identified by their unique diffraction patterns.

[1]  Hywel Morgan,et al.  High throughput particle analysis: combining dielectrophoretic particle focussing with confocal optical detection. , 2006, Biosensors & bioelectronics.

[2]  Matthias Seydack,et al.  Nanoparticle labels in immunosensing using optical detection methods. , 2005, Biosensors & bioelectronics.

[3]  Bruce K Gale,et al.  An integrated optical oxygen sensor fabricated using rapid-prototyping techniques. , 2003, Lab on a chip.

[4]  Anthony G. Frutos,et al.  Rare earth-doped glass microbarcodes , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[5]  M. Bruchez,et al.  Optical coding of mammalian cells using semiconductor quantum dots. , 2004, Analytical biochemistry.

[6]  M. Vellekoop,et al.  Fabrication of miniaturized fluidic devices using SU-8 based lithography and low temperature wafer bonding , 2004 .

[7]  Christine D. Keating,et al.  Electrochemical synthesis and optical readout of striped metal rods with submicron features , 2002 .

[8]  H Morgan,et al.  High capacity tagging using nanostructured diffraction barcodes. , 2006, Optics express.

[9]  J. Jaiswal,et al.  Potentials and pitfalls of fluorescent quantum dots for biological imaging. , 2004, Trends in cell biology.

[10]  Levente Bodrossy,et al.  ARChip epoxy and ARChip UV for covalent on-chip immobilization of pmoA gene-specific oligonucleotides. , 2004, Analytical biochemistry.

[11]  Steve Arscott,et al.  Integrated microfluidics based on multi-layered SU-8 for mass spectrometry analysis , 2004 .

[12]  Peter Vettiger,et al.  High-aspect-ratio, ultrathick, negative-tone near-UV photoresist and its applications for MEMS , 1998 .

[13]  Laurie Brown,et al.  Epoxy resins as stamps for hot embossing of microstructures and microfluidic channels , 2005 .

[14]  C. Preininger,et al.  Optimizing processing parameters for signal enhancement of oligonucleotide and protein arrays on ARChip Epoxy. , 2005, Bioelectrochemistry.

[15]  C. Sewter,et al.  An encoded particle array tool for multiplex bioassays. , 2003, Assay and drug development technologies.

[16]  Steven J. Holmes,et al.  Negative photoresists for optical lithography , 1997, IBM J. Res. Dev..

[17]  Hongsik Park,et al.  Fabrication of Atomic Force Microscope Probe with Low Spring Constant Using SU-8 Photoresist , 2003 .

[18]  Andrew A Berlin,et al.  Composite organic-inorganic nanoparticles (COINs) with chemically encoded optical signatures. , 2005, Nano letters.

[19]  A. Boisen,et al.  Immobilisation of DNA to polymerised SU-8 photoresist. , 2006, Biosensors & bioelectronics.

[20]  Ursula Sauer,et al.  Quality control of chip manufacture and chip analysis using epoxy-chips as a model , 2003 .

[21]  L. Jay Guo,et al.  Recent progress in nanoimprint technology and its applications , 2004 .

[22]  M. Despont,et al.  SU-8: a low-cost negative resist for MEMS , 1997 .

[23]  José Higino Correia,et al.  A SU-8 fluidic microsystem for biological fluids analysis , 2005 .

[24]  Pratul K. Ajmera,et al.  Use of a photoresist sacrificial layer with SU-8 electroplating mould in MEMS fabrication , 2003 .

[25]  Xing Cheng,et al.  One-step lithography for various size patterns with a hybrid mask-mold , 2004 .