Existence and Uniqueness of Perturbation Solutions to DSGE Models

We prove the existence of unique solutions for all undetermined coefficients of nonlinear perturbations of arbitrary order in a wide class of discrete time DSGE models under standard regularity and saddle stability assumptions for linear approximations. Our result follows from the straightforward application of matrix analysis to our perturbation derived with Kronecker tensor calculus. Additionally, we relax the assumptions needed for the local existence theorem of perturbation solutions and prove that the local solution is independent of terms first order in the perturbation parameter.

[1]  Wolfgang Härdle,et al.  Dynamic activity analysis model-based win-win development forecasting under environment regulations in China , 2014, Comput. Stat..

[2]  Walton C. Gibson Three-Dimensional Problems , 2014 .

[3]  Hong Lan,et al.  Dynare add-on for "Solving DSGE Models with a Nonlinear Moving Average" , 2013 .

[4]  R. Nickl,et al.  A Donsker Theorem for Lévy Measures , 2012 .

[5]  K. Judd,et al.  Equilibrium Existence and Approximation for Incomplete Market Models with Substantial Heterogeneity , 2012 .

[6]  Ulf Brüggemann,et al.  Intended and Unintended Consequences of Mandatory IFRS Adoption: A Review of Extant Evidence and Suggestions for Future Research , 2012 .

[7]  Hanna Wielandt,et al.  The Polarization of Employment in German Local Labor Markets , 2012 .

[8]  Ruihong Huang,et al.  On the Dark Side of the Market: Identifying and Analyzing Hidden Order Placements , 2012 .

[9]  Joachim Gassen,et al.  Comparability Effects of Mandatory IFRS Adoption , 2012 .

[10]  W. Härdle,et al.  Quantile Regression in Risk Calibration , 2012 .

[11]  Ralf Sabiwalsky Does Basel II Pillar 3 Risk Exposure Data Help to Identify Risky Banks? , 2012 .

[12]  Jürgen Symanzik,et al.  Computational Statistics (Journal) , 2012 .

[13]  Wolfgang Karl Härdle,et al.  HMM in Dynamic HAC Models , 2012 .

[14]  M. Juillard Local approximation of DSGE models around the risky steady state , 2011 .

[15]  Martin M. Andreasen On the Effects of Rare Disasters and Uncertainty Shocks for Risk Premia in Non-Linear DSGE Models , 2011 .

[16]  Hélène Rey,et al.  The Risky Steady-State , 2011 .

[17]  Paul Gomme,et al.  Second-order approximation of dynamic models without the use of tensors , 2011 .

[18]  Second-order approximation of dynamic models without the use of tensors , 2011 .

[19]  Jinill Kim,et al.  Solving the multi-country Real Business Cycle model using a perturbation method , 2011 .

[20]  G. Lombardo On Approximating DSGE Models by Series Expansions , 2010, SSRN Electronic Journal.

[21]  Pablo A. Guerrón-Quintana,et al.  Risk Matters: The Real Effects of Volatility Shocks , 2009 .

[22]  Antonio Moreno,et al.  The Forward Method as a Solution Refinement in Rational Expectations Models , 2008 .

[23]  A. Sutherland,et al.  Computing Second-Order-Accurate Solutions for Rational Expectation Models Using Linear Solution Methods , 2005, SSRN Electronic Journal.

[24]  O. Kamenik,et al.  Solving SDGE Models: A New Algorithm for the Sylvester Equation , 2005 .

[25]  C. Sims,et al.  Calculating and Using Second Order Accurate Solutions of Discrete Time Dynamic Equilibrium Models , 2003 .

[26]  Christopher A. Sims,et al.  SECOND ORDER ACCURATE SOLUTION OF DISCRETE TIME DYNAMIC EQUILIBRIUM MODELS , 2003 .

[27]  Peter Lancaster,et al.  Lambda-matrices and vibrating systems , 2002 .

[28]  M. Watson,et al.  System Reduction and Solution Algorithms for Singular Linear Difference Systems under Rational Expectations , 2002 .

[29]  C. Sims Solving Linear Rational Expectations Models , 2002 .

[30]  Karl Meerbergen,et al.  The Quadratic Eigenvalue Problem , 2001, SIAM Rev..

[31]  Nicholas J. Higham,et al.  Solving a Quadratic Matrix Equation by Newton's Method with Exact Line Searches , 2001, SIAM J. Matrix Anal. Appl..

[32]  N. Higham,et al.  Numerical analysis of a quadratic matrix equation , 2000 .

[33]  Paul Klein Using the generalized Schur form to solve a multivariate linear rational expectations model , 2000 .

[34]  M. Watson,et al.  The Solution of Singular Linear Difference Systems under Rational Expectations , 1998 .

[35]  M. Pesaran,et al.  Multivariate Linear Rational Expectations Models , 1997, Econometric Theory.

[36]  Sy-Ming Guu,et al.  Asymptotic methods for aggregate growth models , 1997 .

[37]  K. Judd,et al.  SOLVING LARGE-SCALE RATIONAL-EXPECTATIONS MODELS , 1997, Macroeconomic Dynamics.

[38]  H. Neudecker,et al.  Matrix Differential Calculus with Applications , 1988 .

[39]  K. Chu The solution of the matrix equations AXB−CXD=E AND (YA−DZ,YC−BZ)=(E,F) , 1987 .

[40]  F. R. Gantmakher The Theory of Matrices , 1984 .

[41]  George J. Davis,et al.  Numerical Solution of a Quadratic Matrix Equation , 1981 .

[42]  Charles M. Kahn,et al.  THE SOLUTION OF LINEAR DIFFERENCE MODELS UNDER RATIONAL EXPECTATIONS , 1980 .

[43]  J. Magnus,et al.  The Commutation Matrix: Some Properties and Applications , 1979 .

[44]  Joseph F. Traub,et al.  The Algebraic Theory of Matrix Polynomials , 1976 .

[45]  W. Vetter Matrix Calculus Operations and Taylor Expansions , 1973 .

[46]  L. Mirsky,et al.  The Theory of Matrices , 1961, The Mathematical Gazette.

[47]  D. Hamermesh,et al.  Total work and gender: facts and possible explanations , 2012 .

[48]  M. Ratto,et al.  Dynare: Reference Manual Version 4 , 2011 .

[49]  Jesús Fernández-Villaverde Appendix to : “ Risk Matters : The Real Effects of Volatility Shocks ” , 2010 .

[50]  Hamzah Sakidin,et al.  Introduction to linear Algebra , 2010 .

[51]  M. Juillard,et al.  Solving Stochastic Dynamic Equilibrium Models : A kOrder Perturbation Approach , 2008 .

[52]  He-hui Jin,et al.  Perturbation methods for general dynamic stochastic models , 2002 .

[53]  K. Judd Numerical methods in economics , 1998 .

[54]  Michael Binder,et al.  GAUSS and Matlab codes for Multivariate Linear Rational Expectations Models: Characterization of the Nature of the Solutions and Their Fully Recursive Computation , 1997 .

[55]  Harald Uhlig,et al.  A Toolkit for Analysing Nonlinear Dynamic Stochastic Models Easily , 1995 .

[56]  Ellen R. McGrattan,et al.  Mechanics of forming and estimating dynamic linear economies , 1994 .

[57]  J. Magnus,et al.  Matrix Differential Calculus with Applications in Statistics and Econometrics , 1991 .

[58]  Michael Woodford,et al.  Stationary sunspot equilibria: The case of small fluctuations around a deterministic steady state , 1986 .

[59]  G. Golub Matrix computations , 1983 .

[60]  Peter Lancaster,et al.  The theory of matrices , 1969 .

[61]  Andrew T. Levin,et al.  Federal Reserve Bank of San Francisco Working Paper Series Higher-order Perturbation Solutions to Dynamic, Discrete-time Rational Expectations Models Higher-order Perturbation Solutions to Dynamic, Discrete-time Rational Expectations Models , 2022 .

[62]  Stanley E. Zin,et al.  We Are Grateful for Help- Ful Comments and Suggestions from the Bond Premium in a Dsge Model with Long-run Real and Nominal Risks † , 2022 .