Nilpotent Centers in $\mathbb{R}^3$

Consider analytical three-dimensional differential systems having a singular point at the origin such that its linear part is y∂x − λz∂z for some λ 6= 0. The restriction of such systems to a Center Manifold has a nilpotent singular point at the origin. We study the formal integrability and the center problem for those types of singular points in the monodromic case. Our approach do not require polynomial approximations of the Center Manifold in order to study the center problem. As a byproduct, we obtain some useful results for planar C systems having a nilpotent singularity. We conclude the work solving the Nilpotent Center Problem for the Generalized Lorenz system and the Hide-Skeldon-Acheson dynamo system.

[1]  Irene M. Moroz,et al.  On a codimension-three bifurcation arising in a simple dynamo model , 1998 .

[2]  Multiple limit cycles bifurcation from the degenerate singularity for a class of three-dimensional systems , 2016 .

[3]  Jaume Llibre,et al.  Qualitative Theory of Planar Differential Systems , 2006 .

[4]  Y. Bibikov,et al.  Local Theory of Nonlinear Analytic Ordinary Differential Equations , 1979 .

[5]  Armengol Gasull,et al.  Monodromy and Stability for Nilpotent Critical Points , 2005, Int. J. Bifurc. Chaos.

[6]  Isaac A. García,et al.  Formal Inverse Integrating Factor and the Nilpotent Center Problem , 2016, Int. J. Bifurc. Chaos.

[7]  I. A. García,et al.  Cyclicity of polynomial nondegenerate centers on center manifolds , 2018, Journal of Differential Equations.

[8]  Yirong Liu,et al.  On Third-Order Nilpotent Critical Points: Integral Factor Method , 2011, Int. J. Bifurc. Chaos.

[9]  J. Giné,et al.  Analytic nilpotent centers with analytic first integral , 2010 .

[10]  Qinlong Wang,et al.  The Center Conditions and Bifurcation of Limit Cycles at the Degenerate Singularity of a Three-Dimensional System , 2014, J. Appl. Math..

[11]  R. Moussu,et al.  Réversibilité et classification des centres nilpotents , 1994 .

[12]  Valery G. Romanovski,et al.  The center problem on a center manifold in R^3 , 2012 .

[13]  Jaume Giné,et al.  Local analytic integrability for nilpotent centers , 2003, Ergodic Theory and Dynamical Systems.

[14]  H. Zoladek,et al.  The Analytic and Formal Normal Form for the Nilpotent Singularity , 2002 .

[15]  J. Giné,et al.  Analytic integrability around a nilpotent singularity , 2018, Journal of Differential Equations.

[16]  A. Andronov,et al.  Qualitative Theory of Second-order Dynamic Systems , 1973 .

[17]  Valery G. Romanovski,et al.  The Center and Cyclicity Problems: A Computational Algebra Approach , 2009 .

[18]  Joan Torregrosa,et al.  A new algorithm for the computation of the Lyapunov constants for some degenerated critical points , 2001 .

[19]  A. Fuller,et al.  Stability of Motion , 1976, IEEE Transactions on Systems, Man, and Cybernetics.