Review of quantum optical communications and future device evaluations

In this paper, some devices were reviewed to be used in quantum communications. We presented a low density of Quantum Dots, which could be used to get single quantum dot as light emitting source for generating single photons. An analytical model to study the thermal behavior of a solid media in interaction with one, two or three laser beams was developed using the classical heat equation. Integrated optic micro-ring resonators and its simulated result also are presented. Development of active micro-ring in silicon is at an early stage, where both vertical and horizontal techniques are feasible. With the epitaxy growth techniques, a possibility for achieving controllable QD density, size and good uniformity are proposed. A low density of QDs in range of 108 cm-2 has demonstrated through successive adjustment of the growth parameters. Details among the devices are presented and discussed.

[1]  Qianfan Xu,et al.  Micrometre-scale silicon electro-optic modulator , 2005, Nature.

[2]  N. Gisin,et al.  Interferometry with Faraday mirrors for quantum cryptography , 1997 .

[3]  Diana L. Huffaker,et al.  Formation trends in quantum dot growth using metalorganic chemical vapor deposition , 2003 .

[4]  F. B. Dunning,et al.  Atomic, molecular and optical physics : atoms and molecules , 1996 .

[5]  A. Zeilinger,et al.  Long-distance quantum communication with entangled photons using satellites , 2003, quant-ph/0305105.

[6]  Rares V. Medianu,et al.  The role of surface absorption coefficient in the thermal field of the laser–thin film interaction , 2004 .

[7]  Jian-Lin Chiu,et al.  Study of an optical quantum communication system based on polarization-state mapping to Hamiltonian sphere , 2004, SPIE Optics + Photonics.

[8]  Chao Li,et al.  Active silicon microring resonators using metal-oxide-semiconductor capacitors , 2004, First IEEE International Conference on Group IV Photonics, 2004..

[9]  I. Milostnaya,et al.  Middle-Infrared to Visible-Light Ultrafast Superconducting Single-Photon Detectors , 2007, IEEE Transactions on Applied Superconductivity.

[10]  G. V. Treyz,et al.  Silicon optical modulators at 1.3- mu m based on free-carrier absorption , 1991, IEEE Electron Device Letters.

[11]  R. A. Soref,et al.  1.3 μm electro‐optic silicon switch , 1987 .

[12]  Charles H. Bennett,et al.  Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. , 1992, Physical review letters.

[13]  Peter W. Shor,et al.  Quantum Information Theory , 1998, IEEE Trans. Inf. Theory.

[14]  Dan G. Sporea,et al.  Temperature profiles modeling in IR optical components during high power laser irradiation , 2001 .

[15]  Michael Pepper,et al.  Electrically Driven Single-Photon Source , 2001, Science.

[16]  Kimble,et al.  Unconditional quantum teleportation , 1998, Science.

[17]  H. Weinfurter,et al.  Experimental quantum teleportation , 1997, Nature.

[18]  Vien Van,et al.  Optical signal processing using nonlinear semiconductor microring resonators , 2002 .

[19]  Z. Yuan,et al.  Unconditionally secure quantum key distribution over 50 km of standard telecom fibre , 2004, quant-ph/0412173.

[20]  A. Koster,et al.  Low-loss optical waveguide on standard SOI/SIMOX substrate , 1998 .

[21]  Ion N. Mihailescu,et al.  The role of interference in the standard laser calorimetry , 2005 .

[22]  C Z Zhao,et al.  Zero-gap directional coupler switch integrated into a silicon-on insulator for 1.3-microm operation. , 1996, Optics letters.

[23]  Markus Aspelmeyer,et al.  Experimental realization of freely propagating teleported qubits , 2003, Nature.

[24]  Kyo Inoue,et al.  Quantum Cryptography with a Photon Turnstile Device , 2002 .

[25]  Anupam Madhukar,et al.  Nature of strained InAs three‐dimensional island formation and distribution on GaAs(100) , 1994 .

[26]  Jean-Marc Halbout,et al.  Silicon Mach–Zehnder waveguide interferometers based on the plasma dispersion effect , 1991 .

[27]  Y. Shih,et al.  Quantum teleportation with a complete Bell state measurement , 2000, Physical Review Letters.

[28]  Linda Höglund,et al.  Optimising uniformity of InAs/(InGaAs)/GaAs quantum dots grown by metal organic vapor phase epitaxy , 2006 .

[29]  Hideki Hasegawa,et al.  Self-Organized Quantum Dots , 1996 .

[30]  Richard A. Soref,et al.  Kramers-Kronig Analysis Of Electro-Optical Switching In Silicon , 1987, Other Conferences.

[31]  N. Gisin,et al.  Long-distance teleportation of qubits at telecommunication wavelengths , 2003, Nature.

[32]  Y Yamamoto,et al.  Quantum teleportation with a quantum dot single photon source. , 2004, Physical review letters.

[33]  Jinsheng Luo,et al.  Silicon 1*2 digital optical switch using plasma dispersion , 1994 .

[34]  Kohki Mukai,et al.  Molecular beam epitaxial growth of InAs self-assembled quantum dots with light-emission at 1.3 μm , 2000 .

[35]  Diana L. Huffaker,et al.  Selective surface migration for defect-free quantum dot ensembles using metal organic chemical vapor deposition , 2003 .

[36]  Mats-Erik Pistol,et al.  In situ growth of nano-structures by metal-organic vapour phase epitaxy , 1997 .

[37]  S. McLaughlin,et al.  Enhanced throughput for QKD: a multiplexed approach , 2006, IEEE Journal of Selected Topics in Quantum Electronics.

[38]  Dan Apostol,et al.  Mathematical modeling of two-photon thermal fields in laser–solid interaction , 2004 .

[39]  Linda Höglund,et al.  Multilayer InAs/InGaAs quantum dot structure grown by MOVPE for optoelectronic device applications , 2006, SPIE Optics + Photonics.

[40]  Yoshihisa Yamamoto,et al.  Indistinguishable photons from a single-photon device , 2002, Nature.

[41]  Charles H. Bennett,et al.  Quantum cryptography using any two nonorthogonal states. , 1992, Physical review letters.