Integration by parts for nonsymmetric fractional-order operators on a halfspace

Abstract For a strongly elliptic pseudodifferential operator L of order 2a ( 0 a 1 ) with real kernel, we show an integration-by-parts formula for solutions of the homogeneous Dirichlet problem, in the model case where the operator is x-independent with homogeneous symbol, considered on the halfspace R + n . The new aspect compared to ( − Δ ) a is that L is nonsymmetric, having both an even and an odd part. Hence it satisfies a μ-transmission condition where generally μ ≠ a . We present a complex method, relying on a factorization in factors holomorphic in ξ n in the lower or upper complex halfplane, using order-reducing operators combined with a decomposition principle originating from Wiener and Hopf. This is in contrast to a real, computational method presented very recently by Dipierro, Ros-Oton, Serra and Valdinoci. Our method allows μ in a larger range than they consider. Another new contribution is the (model) study of “large” solutions of nonhomogeneous Dirichlet problems when μ > 0 . Here we deduce a “halfways Green's formula” for L: ∫ R + n L u v ¯ d x − ∫ R + n u L ⁎ v ‾ d x = c ∫ R n − 1 γ 0 ( u / x n μ − 1 ) γ 0 ( v ¯ / x n μ ⁎ ) d x ′ , when u solves a nonhomogeneous Dirichlet problem for L, and v solves a homogeneous Dirichlet problem for L ⁎ ; μ ⁎ = 2 a − μ . Finally, we show a full Green's formula, when both u and v solve nonhomogeneous Dirichlet problems; here both Dirichlet and Neumann traces of u and v enter, as well as a first-order pseudodifferential operator over the boundary.

[1]  R. Duduchava,et al.  Pseudodifferentia Equations on Manifolds with Boundary: Fredholm Property and Asymptotic , 2001 .

[2]  Louis Boutet de Monvel Comportement d'un opérateur pseudo-différentiel sur une variété à bord , 1966 .

[3]  G. Grubb Distributions and Operators , 2008 .

[4]  E. Schrohe A Short Introduction to Boutet de Monvel’s Calculus , 2001 .

[5]  Robert T. Seeley,et al.  SINGULAR INTEGRALS AND BOUNDARY VALUE PROBLEMS. , 1966 .

[6]  G. Grubb On the Functional Calculus of Pseudo-Differential Boundary Problems , 1984 .

[7]  L. B. D. Monvel Boundary problems for pseudo-differential operators , 1971 .

[8]  Nicola Abatangelo Large $s$-harmonic functions and boundary blow-up solutions for the fractional Laplacian , 2013, 1310.3193.

[9]  L. Hörmander The Analysis of Linear Partial Differential Operators III , 2007 .

[10]  G. Grubb Limited regularity of solutions to fractional heat and Schrödinger equations , 2018, Discrete & Continuous Dynamical Systems - A.

[11]  Gerd Grubb,et al.  Local and nonlocal boundary conditions for μ-transmission and fractional elliptic pseudodifferential operators , 2014, 1403.7140.

[12]  Xavier Ros-Oton,et al.  The Dirichlet problem for the fractional Laplacian: Regularity up to the boundary , 2012, 1207.5985.

[13]  L. B. Monvel Comportement d'un opérateur pseudo-différentiel sur une variété à bord , 1966 .

[14]  Xavier Ros-Oton,et al.  The obstacle problem for the fractional Laplacian with critical drift , 2016, Mathematische Annalen.

[15]  L. Hörmander Seminar Notes on Pseudo-Differential Operators and Boundary Problems , 1966 .

[16]  G. Grubb Integration by parts and Pohozaev identities for space-dependent fractional-order operators , 2015, 1511.03901.

[17]  Green’s formula and a Dirichlet-to-Neumann operator for fractional-order pseudodifferential operators , 2016, 1611.03024.

[18]  G. Eskin Boundary Value Problems for Elliptic Pseudodifferential Equations , 2008 .

[19]  Gerd Grubb,et al.  Fractional Laplacians on domains, a development of Hörmander's theory of μ-transmission pseudodifferential operators , 2013, 1310.0951.

[20]  E. Valdinoci,et al.  Non-symmetric stable operators: Regularity theory and integration by parts , 2020, Advances in Mathematics.

[21]  L. Hörmander The analysis of linear partial differential operators , 1990 .

[22]  G. Grubb,et al.  A global calculus of parameter-dependent pseudodifferential boundary problems inLp Sobolev spaces , 1993 .