Contribution à l'étude et la simulation du procédé l'hydroformage

Le procede d'hydroformage repose sur la deformation plastique d'une forme premiere (tole, tube) sous l'action combinee d'un fluide sous pression et d'un outil rigide. L'objet de ces travaux est de contribuer a la modelisation de ce procede. Cette contribution s'articule autour de trois problematiques essentielles: la caracterisation rheologique, la prediction des defauts de striction et le developpement d'algorithmes adaptes a la simulation de l'hydroformage. - L'identification experimentale des courbes d'ecrouissage en grandes deformations est necessaire afin d'eviter toute extrapolation intempestive au cours d'une simulation numerique. A cet effet, un essai de gonflage circulaire, analyse selon un modele homogene, a ete mis en place. Des resultats tres satisfaisants ont pu ainsi etre obtenus grâce notamment a la mesure locale du rayon de courbure de la tole. - La prediction de la striction au cours de l'operation d'hydroformage est essentielle pour la maitrise de ce procede. Dans cette optique, le Critere de Force Maximum Modifie a fait l'objet d'une etude detaillee. Il a ete demontre que la forme locale de la surface de charge constitue le facteur le plus influant sur les predictions du modele. Le probleme de la dependance de la CLF au trajet a ete egalement aborde, nous avons pu mettre l'accent sur l'utilite d'une representation des CLF dans l'espace des deformations equivalentes afin de s'affranchir de cette dependance. Enfin, nous avons propose un modele integrant l'effet de la sensibilite a la vitesse de deformation. La confrontation avec les resultats experimentaux de toles en acier a montre une amelioration des predictions mais le modele reste relativement conservatif. - Le troisieme volet a concerne la modelisation numerique. D'une part, un schema d'integration implicite reposant sur une actualisation iterative du maillage et tenant compte des derivees du domaine a pu etre teste. Les resultats ont montre la faible influence des derivees du domaine. En revanche, l'actualisation iterative semble ameliorer la conservation du volume. D'autre part, il est bien etabli que certains materiaux peuvent presenter un potentiel de deformation au-dela du pic de pression. Pour une simulation correcte de ce potentiel de deformation, nous avons developpe plusieurs variantes de la methode de continuation. Reposant sur une technique de prediction-correction, ces methodes ont permis de depasser le pic qui reste un point infranchissables pour la methode conventionnelle de controle de pression.

[1]  Viggo Tvergaard,et al.  Forming limit diagrams for anisotropic metal sheets with different yield criteria , 2000 .

[2]  Joost J. Vlassak,et al.  Measuring the Mechanical Properties of Thin Metal Films by Means of Bulge Testing of Micromachined Windows , 1994 .

[3]  P. Hein,et al.  Hydroforming of sheet metal pairs from aluminium alloys , 2001 .

[4]  Thierry Coupez Grandes transformations et remaillage automatique , 1991 .

[5]  Manfred Geiger,et al.  Double Sheet Hydroforming of Complex Hollow Parts (7th ICTP小特集号) -- (Outstanding Papers and Presentations) , 2003 .

[6]  Peter Wriggers,et al.  A simple method for the calculation of postcritical branches , 1988 .

[7]  Thomas B. Stoughton,et al.  An experimental and numerical study of necking initiation in aluminium alloy tubes during hydroforming , 2004 .

[8]  Arnaud Lejeune Modélisation et simulation de striction et de plissement en emboutissage de tôles minces et hydroformage de tubes minces , 2002 .

[9]  David R. Owen,et al.  A new criterion for determination of initial loading parameter in arc-length methods , 1996 .

[10]  C. Gruau Génération de métriques pour adaptation anisotrope de maillages, applications à la mise en forme des matériaux , 2004 .

[11]  Z. Marciniak,et al.  Influence of the plastic properties of a material on the forming limit diagram for sheet metal in tension , 1973 .

[12]  K. H. Kim,et al.  Evolution of anisotropy under plane stress , 1997 .

[13]  Cv Clemens Verhoosel,et al.  Non-Linear Finite Element Analysis of Solids and Structures , 1991 .

[14]  Xiao-zu Su,et al.  Arc-length technique for nonlinear finite element analysis , 2004, Journal of Zhejiang University. Science.

[15]  R. Hill A general theory of uniqueness and stability in elastic-plastic solids , 1958 .

[16]  Influence of strain-rate sensitivity on necking and instability in sheet metal forming , 1999 .

[17]  W. Hosford,et al.  Effect of changing strain paths on forming limit diagrams of Al 2008-T4 , 1993 .

[18]  E. W. Hart Theory of the tensile test , 1967 .

[19]  A. Needleman Material rate dependence and mesh sensitivity in localization problems , 1988 .

[20]  H. H. Pijlman Sheet material characterisation by multi-axial experiments , 2001 .

[21]  R. Hill,et al.  On discontinuous plastic states, with special reference to localized necking in thin sheets , 1952 .

[22]  P. B. Mellor,et al.  Predictions of limit strains in sheet metal using a more general yield criterion , 1978 .

[23]  Jung-Ho Cheng,et al.  Fracture criterion and forming pressure design for superplastic bulging , 2002 .

[24]  I. M. May,et al.  A LOCAL ARC-LENGTH PROCEDURE FOR STRAIN SOFTENING , 1997 .

[25]  R. Borst Computation of post-bifurcation and post-failure behavior of strain-softening solids , 1987 .

[26]  D. R. J. Owen,et al.  Determination of travel directions in path-following methods , 1995 .

[27]  G. Wempner Discrete approximations related to nonlinear theories of solids , 1971 .

[28]  J. C. Simo,et al.  Consistent tangent operators for rate-independent elastoplasticity☆ , 1985 .

[29]  Limits to the ductility of metal sheets subjected to complex strain-paths , 1998 .

[30]  Post-critical plastic deformation of biaxially stretched sheets , 1996 .

[31]  K. Neale,et al.  Finite plastic deformation of a circular membrane under hydrostatic pressure—I: Rate-independent behaviour , 1983 .

[32]  Siegfried F. Stiemer,et al.  Improved arc length orthogonality methods for nonlinear finite element analysis , 1987 .

[33]  Amit K. Ghosh Tensile instability and necking in materials with strain hardening and strain-rate hardening , 1977 .

[34]  Jung-Ho Cheng,et al.  The analysis of instability and strain concentration during superplastic deformation , 2001 .

[35]  Norman Jones,et al.  Experimental and numerical study in axial crushing of thin walled sections made of high-strength steels , 2003 .

[36]  W. Hosford,et al.  Calculations of forming limit diagrams for changing strain paths , 1993 .

[37]  John W. Hutchinson,et al.  Influence of strain-rate sensitivity on necking under uniaxial tension , 1977 .

[38]  Frank Vollertsen,et al.  Hydroforming of sheet metal pairs , 1999 .

[39]  R. Borst,et al.  Studies in anisotropic plasticity with reference to the Hill criterion , 1990 .

[40]  F. Costes Modélisation thermomécanique tridimensionnelle par éléments finis de la coulée continue d'aciers , 2004 .

[41]  John W. Hutchinson,et al.  Sheet Necking-III. Strain-Rate Effects , 1978 .

[42]  David Murray,et al.  An incremental solution technique for unstable equilibrium paths of shell structures , 1995 .

[43]  Amit K. Ghosh Strain localization in the diffuse neck in sheet metal , 1974, Metallurgical and Materials Transactions B.

[44]  M. Crisfield A FAST INCREMENTAL/ITERATIVE SOLUTION PROCEDURE THAT HANDLES "SNAP-THROUGH" , 1981 .

[45]  J.A.H. Ramaekers,et al.  A criterion for local necking , 2000 .

[46]  David W. A. Rees,et al.  Plastic flow in the elliptical bulge test , 1995 .

[47]  Peter Wriggers,et al.  Consistent linearization for path following methods in nonlinear FE analysis , 1986 .

[48]  E. Riks An incremental approach to the solution of snapping and buckling problems , 1979 .

[49]  K. Neale,et al.  Finite plastic deformation of a circular membrane under hydrostatic pressure—II: Strain-rate effects , 1983 .

[50]  Qiang Xue,et al.  A study on the instability problem for 3D frames , 1998 .

[51]  E. A. de Souza Neto,et al.  On the determination of the path direction for arc-length methods in the presence of bifurcations and `snap-backs' , 1999 .

[52]  E. Riks The Application of Newton's Method to the Problem of Elastic Stability , 1972 .

[53]  J. Gronostajski,et al.  Sheet metal forming-limits for complex strain paths , 1984 .

[54]  R. Brown,et al.  The Effect of Strain Rate on the Forming Limit Diagram for Sheet Metal , 1980 .

[55]  Nicolas Chevaugeon Contribution à l'étude des membranes hyperélastiques en grandes déformations , 2002 .

[56]  Andres Rodriguez Villa Etude theorique et experimentale de l'extrusion-soufflage de corps creux en polymere , 1997 .

[57]  C. Chu,et al.  Bifurcation of Elastic-Plastic Circular Cylindrical Shells Under Internal Pressure , 1979 .

[58]  M. Crisfield An arc‐length method including line searches and accelerations , 1983 .

[59]  W. Wunderlich Nonlinear Finite Element Analysis in Structural Mechanics , 1981 .

[60]  Bulge Test on Free Standing Gold Thin Films , 2003 .

[61]  Michel Deville,et al.  Modélisation numérique en science et génie des matériaux , 1998 .

[62]  R. Mahmudi Post-uniform deformation in uniaxial and equi-biaxial stretching of aluminium alloy sheets , 1997 .

[63]  Emmanuel Boyère Contribution à la modélisation numérique thermomécanique tridimensionnelle du forgeage , 1999 .

[64]  P. Friedman,et al.  Effects of plastic anisotropy and yield criteria on prediction of forming limit curves , 2000 .

[65]  Amit K. Ghosh A numerical analysis of the tensile test for sheet metals , 1977 .

[66]  M. Brunet,et al.  Two Prediction Methods For Ductile Sheet Metal Failure , 2007 .

[67]  Z. Marciniak,et al.  Limit strains in the processes of stretch-forming sheet metal , 1967 .