An Integrated Bayesian Approach to Shape Representation and Perceptual Organization

We present a unified Bayesian approach to shape representation and related problems in perceptual organization, including part decomposition, shape similarity, figure/ground estimation, and 3D shape. The approach is based on the idea of estimating the skeletal structure most likely to have generated the observed shape via a process of stochastic “growth.” We survey the approach briefly and show how it can be extended in a principled way to solve a wide array of related problems.

[1]  C. A. Burbeck,et al.  Scaled medial axis representation: evidence from position discrimination task , 1998, Vision Research.

[2]  J. Hochberg,et al.  Pictorial recognition as an unlearned ability: a study of one child's performance. , 1962, The American journal of psychology.

[3]  Elan Barenholtz,et al.  Visual judgment of similarity across shape transformations: evidence for a compositional model of articulated objects. , 2008, Acta psychologica.

[4]  Rolf Nelson,et al.  Figure – Ground Effects on Shape Memory for Objects versus Holes , 2008, Perception.

[5]  J. Feldman,et al.  Information along contours and object boundaries. , 2005, Psychological review.

[6]  Manish Singh,et al.  Bayesian estimation of the shape skeleton , 2010 .

[7]  Yair Weiss,et al.  Interpreting Images by Propagating Bayesian Beliefs , 1996, NIPS.

[8]  Haibin Ling,et al.  Shape Classification Using the Inner-Distance , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[9]  HARRY BLUM,et al.  Shape description using weighted symmetric axis features , 1978, Pattern Recognit..

[10]  Donald D. Hoffman,et al.  Parts of recognition , 1984, Cognition.

[11]  H. Blum Biological shape and visual science (part I) , 1973 .

[12]  O. Reiser,et al.  Principles Of Gestalt Psychology , 1936 .

[13]  I. Biederman Recognition-by-components: a theory of human image understanding. , 1987, Psychological review.

[14]  Adam Finkelstein,et al.  How well do line drawings depict shape , 2009, SIGGRAPH 2009.

[15]  Manish Singh,et al.  A Bayesian Framework for Figure-Ground Interpretation , 2010, NIPS.

[16]  Seha Kim,et al.  THE INFLUENCE OF AXIALITY ON FIGURE/GROUND ASSIGNMENT , 2011 .

[17]  D. Marr,et al.  Representation and recognition of the spatial organization of three-dimensional shapes , 1978, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[18]  M. Fatih Demirci,et al.  Object Recognition as Many-to-Many Feature Matching , 2006, International Journal of Computer Vision.

[19]  J. Feldman,et al.  Superordinate shape classification using natural shape statistics , 2011, Cognition.

[20]  Jon Driver,et al.  Edge-Assignment and Figure–Ground Segmentation in Short-Term Visual Matching , 1996, Cognitive Psychology.

[21]  Adam Finkelstein,et al.  How well do line drawings depict shape? , 2009, SIGGRAPH '09.

[22]  David L. Waltz,et al.  Understanding Line drawings of Scenes with Shadows , 1975 .

[23]  Eric T. Carlson,et al.  Medial Axis Shape Coding in Macaque Inferotemporal Cortex , 2012, Neuron.

[24]  Jitendra Malik,et al.  Interpreting line drawings of curved objects , 1986, International Journal of Computer Vision.

[25]  Brian P. Dyre,et al.  Perceptual similarity of shapes generated from Fourier descriptors. , 1996, Journal of experimental psychology. Human perception and performance.

[26]  E. Briscoe,et al.  SHAPE SKELETONS AND SHAPE SIMILARITY , 2010 .

[27]  Jon Driver,et al.  Obligatory edge-assignment in vision: The role of figure and part segmentation in symmetry detection. , 1995 .

[28]  Kanti V. Mardia,et al.  Statistics of Directional Data , 1972 .

[29]  Jacqueline M. Fulvio,et al.  Bayesian contour extrapolation: Geometric determinants of good continuation , 2007, Vision Research.

[30]  T. Shipley,et al.  PART-BASED REPRESENTATIONS OF VISUAL SHAPE AND IMPLICATIONS FOR VISUAL COGNITION , 2002 .

[31]  Benjamin B. Kimia,et al.  On the role of medial geometry in human vision , 2003, Journal of Physiology-Paris.

[32]  Benjamin B. Kimia,et al.  Curves vs skeletons in object recognition , 2001, Proceedings 2001 International Conference on Image Processing (Cat. No.01CH37205).

[33]  Irving Biederman,et al.  Cortical representation of medial axis structure. , 2013, Cerebral cortex.

[34]  Alan K. Mackworth Interpreting Pictures of Polyhedral Scenes , 1973, IJCAI.

[35]  Stephen M. Pizer,et al.  Untangling the Blum Medial Axis Transform , 2003, International Journal of Computer Vision.

[36]  Michael Leyton,et al.  Inferring Causal History from Shape , 1989, Cogn. Sci..

[37]  Sven J. Dickinson,et al.  Optimal inference for hierarchical skeleton abstraction , 2004, Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004..

[38]  R. Weale Vision. A Computational Investigation Into the Human Representation and Processing of Visual Information. David Marr , 1983 .

[39]  Donald D. Hoffman,et al.  Parsing silhouettes: The short-cut rule , 1999, Perception & psychophysics.

[40]  A. Macworth Interpreting pictures of polyhedral scenes , 1973 .

[41]  Song-Chun Zhu,et al.  Stochastic Jump-Diffusion Process for Computing Medial Axes in Markov Random Fields , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[42]  J. Feldman Curvilinearity, covariance, and regularity in perceptual groups , 1997, Vision Research.

[43]  Walter Gerbino,et al.  Convexity and Symmetry in Figure-Ground Organization , 1976 .

[44]  Edward H. Adelson,et al.  Playing with Puffball: simple scale-invariant inflation for use in vision and graphics , 2012, SAP '12.

[45]  K Siddiqi,et al.  Parts of Visual Form: Psychophysical Aspects , 1996, Perception.

[46]  Bela Julesz,et al.  Medial-point description of shape: a representation for action coding and its psychophysical correlates , 1998, Vision Research.

[47]  Jacob feldman,et al.  Bayesian contour integration , 2001, Perception & psychophysics.

[48]  Matthijs C. Dorst Distinctive Image Features from Scale-Invariant Keypoints , 2011 .

[49]  Ali Shokoufandeh,et al.  Shock Graphs and Shape Matching , 1998, International Journal of Computer Vision.

[50]  Song-Chun Zhu,et al.  Embedding Gestalt Laws in Markov Random Fields , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[51]  W Richards,et al.  Encoding contour shape by curvature extrema. , 1986, Journal of the Optical Society of America. A, Optics and image science.

[52]  Benjamin B. Kimia,et al.  The Medial Scaffold of 3D Unorganized Point Clouds , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[53]  Paul L. Rosin Shape Partitioning by Convexity , 1999, BMVC.

[54]  Jacqueline M. Fulvio,et al.  Visual extrapolation of contour geometry. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[55]  J. Wagemans,et al.  Segmentation of object outlines into parts: A large-scale integrative study , 2006, Cognition.