Evolution of Black-Box Models Based on Volterra Series

This paper presents a historical review of the many behavioral models actually used to model radio frequency power amplifiers and a new classification of these behavioral models. It also discusses the evolution of these models, from a single polynomial to multirate Volterra models, presenting equations and estimation methods. New trends in RF power amplifier behavioral modeling are suggested.

[1]  O. Nelles Nonlinear System Identification , 2001 .

[2]  R. Pearson Selecting nonlinear model structures for computer control , 2003 .

[3]  M. Schetzen The Volterra and Wiener Theories of Nonlinear Systems , 1980 .

[4]  M. J. Hall How well does your model fit the data , 2001 .

[5]  W. Rugh Nonlinear System Theory: The Volterra / Wiener Approach , 1981 .

[6]  V. J. Mathews,et al.  Polynomial Signal Processing , 2000 .

[7]  Michael Gadringer,et al.  Analysis of Variations of Volterra Series Models for RF Power Amplifiers , 2013, IEEE Microwave and Wireless Components Letters.

[8]  J.C. Pedro,et al.  A comparative overview of microwave and wireless power-amplifier behavioral modeling approaches , 2005, IEEE Transactions on Microwave Theory and Techniques.

[9]  K. Sam Shanmugan,et al.  Simulation of Communication Systems , 1992 .

[10]  Jonmei J. Yan,et al.  Open-Loop Digital Predistorter for RF Power Amplifiers Using Dynamic Deviation Reduction-Based Volterra Series , 2008, IEEE Transactions on Microwave Theory and Techniques.

[11]  Nikos Mamoulis,et al.  One-Pass Wavelet Synopses for Maximum-Error Metrics , 2005, VLDB.

[12]  G. Magerl,et al.  Extraction and Improvements of a Behavioral Model Based on the Wiener-Bose Structure Used for Baseband Volterra Kernels Estimation , 2007, 2007 IEEE/MTT-S International Microwave Symposium.

[13]  V. John Mathews,et al.  Parallel-cascade realizations and approximations of truncated Volterra systems , 1998, IEEE Trans. Signal Process..

[14]  J.C. Pedro,et al.  Pruning the Volterra Series for Behavioral Modeling of Power Amplifiers Using Physical Knowledge , 2007, IEEE Transactions on Microwave Theory and Techniques.

[16]  T.J. Brazil,et al.  RF power amplifier behavioral modeling using Volterra expansion with Laguerre functions , 2005, IEEE MTT-S International Microwave Symposium Digest, 2005..

[17]  Timo Rahkonen,et al.  Distortion in RF power amplifiers , 2003 .

[18]  Sergio Benedetto,et al.  Principles of digital transmission , 1999 .

[19]  Christian Fager,et al.  A Comparative Analysis of the Complexity/Accuracy Tradeoff in Power Amplifier Behavioral Models , 2010, IEEE Transactions on Microwave Theory and Techniques.

[20]  Mairtin O'Droma Dynamic range and other fundamentals of the complex Bessel function series approximation model for memoryless nonlinear devices , 1989, IEEE Trans. Commun..

[21]  Michael J. Korenberg,et al.  Parallel cascade identification and kernel estimation for nonlinear systems , 2006, Annals of Biomedical Engineering.

[22]  Carlos Crespo-Cadenas,et al.  A New Approach to Pruning Volterra Models for Power Amplifiers , 2010, IEEE Transactions on Signal Processing.

[23]  Vasilis Z. Marmarelis,et al.  Nonlinear Dynamic Modeling of Physiological Systems , 2004 .

[24]  Carlos Crespo-Cadenas,et al.  A compact Volterra model for power amplifiers with memory , 2009, 2009 IEEE MTT-S International Microwave Symposium Digest.

[25]  C. Willmott,et al.  Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance , 2005 .