Mismatch induced speciation in Salmonella: model and data

In bacteria, DNA sequence mismatches act as a barrier to recombination between distantly related organisms and can potentially promote the cohesion of species. We have performed computer simulations which show that the homology dependence of recombination can cause de novo speciation in a neutrally evolving population once a critical population size has been exceeded. Our model can explain the patterns of divergence and genetic exchange observed in the genus Salmonella, without invoking either natural selection or geographical population subdivision. If this model was validated, based on extensive sequence data, it would imply that the named subspecies of Salmonella enterica correspond to good biological species, making species boundaries objective. However, multilocus sequence typing data, analysed using several conventional tools, provide a misleading impression of relationships within S. enterica subspecies enterica and do not provide the resolution to establish whether new species are presently being formed.

[1]  Daniel Falush,et al.  A bimodal pattern of relatedness between the Salmonella Paratyphi A and Typhi genomes: convergence or divergence by homologous recombination? , 2006, Genome research.

[2]  P. Smouse,et al.  genalex 6: genetic analysis in Excel. Population genetic software for teaching and research , 2006 .

[3]  D. Sandvang,et al.  Genotypic characterization of Salmonella by multilocus sequence typing, pulsed-field gel electrophoresis and amplified fragment length polymorphism. , 2005, Journal of microbiological methods.

[4]  C. Fraser,et al.  Fuzzy species among recombinogenic bacteria , 2005, BMC Biology.

[5]  G. Garrity,et al.  Nomenclature and taxonomy of the genus Salmonella. , 2005, International Journal of Systematic and Evolutionary Microbiology.

[6]  Rekha R Meyer,et al.  Comparison of genome degradation in Paratyphi A and Typhi, human-restricted serovars of Salmonella enterica that cause typhoid , 2004, Nature Genetics.

[7]  T. Cebula,et al.  Limited boundaries for extensive horizontal gene transfer among Salmonella pathogens , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[8]  M. Stephens,et al.  Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. , 2003, Genetics.

[9]  Mark Achtman,et al.  Salmonella typhi, the causative agent of typhoid fever, is approximately 50,000 years old. , 2002, Infection, genetics and evolution : journal of molecular epidemiology and evolutionary genetics in infectious diseases.

[10]  J. Bridle Genes, Categories and Species: the Evolutionary and Cognitive Causes of the Species Problem , 2002, Heredity.

[11]  J. Lawrence,et al.  Gene transfer in bacteria: speciation without species? , 2002, Theoretical population biology.

[12]  O. Colin Stine,et al.  Multilocus Sequence Typing for Characterization of Clinical and Environmental Salmonella Strains , 2002, Journal of Clinical Microbiology.

[13]  Sudhir Kumar,et al.  MEGA2: molecular evolutionary genetics analysis software , 2001, Bioinform..

[14]  F. Taddei,et al.  No Genetic Barriers between Salmonella enterica Serovar Typhimurium and Escherichia coli in SOS-Induced Mismatch Repair-Deficient Cells , 2000, Journal of bacteriology.

[15]  P. Donnelly,et al.  Inference of population structure using multilocus genotype data. , 2000, Genetics.

[16]  J. Hein,et al.  The coalescent with gene conversion. , 2000, Genetics.

[17]  Christopher G. Dowson,et al.  Barriers to Genetic Exchange between Bacterial Species: Streptococcus pneumoniae Transformation , 2000, Journal of bacteriology.

[18]  B. Spratt,et al.  multilocus sequence typing , 2017 .

[19]  F. Cohan,et al.  Discovery and classification of ecological diversity in the bacterial world: the role of DNA sequence data. , 1997, International journal of systematic bacteriology.

[20]  S. Maloy,et al.  Barriers to recombination between closely related bacteria: MutS and RecBCD inhibit recombination between Salmonella typhimurium and Salmonella typhi. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[21]  M. Popoff Antigenic formulas of the Salmonella serovars , 1997 .

[22]  M. Kreitman,et al.  The neutral theory is dead. Long live the neutral theory. , 1996, BioEssays : news and reviews in molecular, cellular and developmental biology.

[23]  F. Neidhart Escherichia coli and Salmonella. , 1996 .

[24]  M. Roberts,et al.  The log-linear relationship between sexual isolation and sequence divergence in Bacillus transformation is robust. , 1995, Genetics.

[25]  F. Cohan DOES RECOMBINATION CONSTRAIN NEUTRAL DIVERGENCE AMONG BACTERIAL TAXA? , 1995, Evolution; international journal of organic evolution.

[26]  D. Hartl,et al.  Selection intensity for codon bias. , 1994, Genetics.

[27]  B. Spratt,et al.  Ecological separation and genetic isolation of Neisseria gonorrhoeae and Neisseria meningitidis , 1993, Current Biology.

[28]  M. Roberts,et al.  The effect of DNA sequence divergence on sexual isolation in Bacillus. , 1993, Genetics.

[29]  J. M. Smith,et al.  How clonal are bacteria? , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[30]  D. Dykhuizen,et al.  Recombination in Escherichia coli and the definition of biological species , 1991, Journal of bacteriology.

[31]  B. Plikaytis,et al.  Clonal nature of Salmonella typhi and its genetic relatedness to other salmonellae as shown by multilocus enzyme electrophoresis, and proposal of Salmonella bongori comb. nov , 1989, Journal of clinical microbiology.

[32]  J. Wells,et al.  Toward a population genetic analysis of Salmonella: genetic diversity and relationships among strains of serotypes S. choleraesuis, S. derby, S. dublin, S. enteritidis, S. heidelberg, S. infantis, S. newport, and S. typhimurium. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[33]  Henry Huang,et al.  Homologous recombination in Escherichia coli: dependence on substrate length and homology. , 1986, Genetics.

[34]  J. Felsenstein Phylogenies and the Comparative Method , 1985, The American Naturalist.

[35]  M. Véron,et al.  [The taxonomy of Salmonella]. , 1982, Annales de microbiologie.

[36]  M. Véron,et al.  [A proposal for Salmonella nomenclature]. , 1982, Annales de microbiologie.

[37]  Daniel E. Dykhuizen,et al.  IN ESCHERICHIA COLI , 1981 .

[38]  S. Wright,et al.  Evolution in Mendelian Populations. , 1931, Genetics.

[39]  R. A. Fisher,et al.  The Genetical Theory of Natural Selection , 1931 .

[40]  R. Punnett,et al.  The Genetical Theory of Natural Selection , 1930, Nature.