Randomized Alternating Least Squares for Canonical Tensor Decompositions: Application to A PDE With Random Data
暂无分享,去创建一个
Gregory Beylkin | Alireza Doostan | Matthew J. Reynolds | G. Beylkin | A. Doostan | Matthew J. Reynolds
[1] Tamás Sarlós,et al. Improved Approximation Algorithms for Large Matrices via Random Projections , 2006, 2006 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS'06).
[2] Nathan Halko,et al. Finding Structure with Randomness: Probabilistic Algorithms for Constructing Approximate Matrix Decompositions , 2009, SIAM Rev..
[3] V. Rokhlin,et al. A fast randomized algorithm for the approximation of matrices ✩ , 2007 .
[4] Charles R. Johnson,et al. Topics in Matrix Analysis , 1991 .
[5] Martin J. Mohlenkamp,et al. Algorithms for Numerical Analysis in High Dimensions , 2005, SIAM J. Sci. Comput..
[6] Tamara G. Kolda,et al. Tensor Decompositions and Applications , 2009, SIAM Rev..
[7] Roman Vershynin,et al. Introduction to the non-asymptotic analysis of random matrices , 2010, Compressed Sensing.
[8] By A. Doostan,et al. A least-squares approximation of high-dimensional uncertain systems , 2022 .
[9] Robert H. Halstead,et al. Matrix Computations , 2011, Encyclopedia of Parallel Computing.
[10] J. Chang,et al. Analysis of individual differences in multidimensional scaling via an n-way generalization of “Eckart-Young” decomposition , 1970 .
[11] Richard A. Harshman,et al. Foundations of the PARAFAC procedure: Models and conditions for an "explanatory" multi-model factor analysis , 1970 .
[12] E. Davidson,et al. Strategies for analyzing data from video fluorometric monitoring of liquid chromatographic effluents , 1981 .
[13] A. Nouy. A generalized spectral decomposition technique to solve a class of linear stochastic partial differential equations , 2007 .
[14] Tamara G. Kolda,et al. Cross-language information retrieval using PARAFAC2 , 2007, KDD '07.
[15] Zizhong Chen,et al. Condition Numbers of Gaussian Random Matrices , 2005, SIAM J. Matrix Anal. Appl..
[16] A. Nouy. Proper Generalized Decompositions and Separated Representations for the Numerical Solution of High Dimensional Stochastic Problems , 2010 .
[17] F. Chinesta,et al. A Short Review in Model Order Reduction Based on Proper Generalized Decomposition , 2018 .
[18] Daniel Kressner,et al. A literature survey of low‐rank tensor approximation techniques , 2013, 1302.7121.
[19] Martin J. Mohlenkamp,et al. Numerical operator calculus in higher dimensions , 2002, Proceedings of the National Academy of Sciences of the United States of America.
[20] Michael W. Berry,et al. Discussion Tracking in Enron Email using PARAFAC. , 2008 .
[21] H. Matthies,et al. Partitioned treatment of uncertainty in coupled domain problems: A separated representation approach , 2013, 1305.6818.
[22] V. Rokhlin,et al. A fast randomized algorithm for overdetermined linear least-squares regression , 2008, Proceedings of the National Academy of Sciences.
[23] A. Edelman. Eigenvalues and condition numbers of random matrices , 1988 .
[24] A. Nouy. Generalized spectral decomposition method for solving stochastic finite element equations : Invariant subspace problem and dedicated algorithms , 2008 .
[25] Ivan Oseledets,et al. Tensor-Train Decomposition , 2011, SIAM J. Sci. Comput..
[26] W. Hackbusch. Tensor Spaces and Numerical Tensor Calculus , 2012, Springer Series in Computational Mathematics.
[27] Gregory Beylkin,et al. Randomized interpolative decomposition of separated representations , 2013, J. Comput. Phys..
[28] Rasmus Bro,et al. A comparison of algorithms for fitting the PARAFAC model , 2006, Comput. Stat. Data Anal..
[29] Gianluca Iaccarino,et al. A least-squares approximation of partial differential equations with high-dimensional random inputs , 2009, J. Comput. Phys..
[30] G. Iaccarino,et al. Non-intrusive low-rank separated approximation of high-dimensional stochastic models , 2012, 1210.1532.
[31] Boris N. Khoromskij,et al. Tensor-Structured Galerkin Approximation of Parametric and Stochastic Elliptic PDEs , 2011, SIAM J. Sci. Comput..