Randomized Alternating Least Squares for Canonical Tensor Decompositions: Application to A PDE With Random Data

This paper introduces a randomized variation of the alternating least squares (ALS) algorithm for rank reduction of canonical tensor formats. The aim is to address the potential numerical ill-conditioning of least squares matrices at each ALS iteration. The proposed algorithm, dubbed randomized ALS, mitigates large condition numbers via projections onto random tensors, a technique inspired by well-established randomized projection methods for solving overdetermined least squares problems in a matrix setting. A probabilistic bound on the condition numbers of the randomized ALS matrices is provided, demonstrating reductions relative to their standard counterparts. Additionally, results are provided that guarantee comparable accuracy of the randomized ALS solution at each iteration. The performance of the randomized algorithm is studied with three examples, including manufactured tensors and an elliptic PDE with random inputs. In particular, for the latter, tests illustrate not only improvements in condition numbers, but also improved accuracy of the iterative solver for the PDE solution represented in a canonical tensor format.

[1]  Tamás Sarlós,et al.  Improved Approximation Algorithms for Large Matrices via Random Projections , 2006, 2006 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS'06).

[2]  Nathan Halko,et al.  Finding Structure with Randomness: Probabilistic Algorithms for Constructing Approximate Matrix Decompositions , 2009, SIAM Rev..

[3]  V. Rokhlin,et al.  A fast randomized algorithm for the approximation of matrices ✩ , 2007 .

[4]  Charles R. Johnson,et al.  Topics in Matrix Analysis , 1991 .

[5]  Martin J. Mohlenkamp,et al.  Algorithms for Numerical Analysis in High Dimensions , 2005, SIAM J. Sci. Comput..

[6]  Tamara G. Kolda,et al.  Tensor Decompositions and Applications , 2009, SIAM Rev..

[7]  Roman Vershynin,et al.  Introduction to the non-asymptotic analysis of random matrices , 2010, Compressed Sensing.

[8]  By A. Doostan,et al.  A least-squares approximation of high-dimensional uncertain systems , 2022 .

[9]  Robert H. Halstead,et al.  Matrix Computations , 2011, Encyclopedia of Parallel Computing.

[10]  J. Chang,et al.  Analysis of individual differences in multidimensional scaling via an n-way generalization of “Eckart-Young” decomposition , 1970 .

[11]  Richard A. Harshman,et al.  Foundations of the PARAFAC procedure: Models and conditions for an "explanatory" multi-model factor analysis , 1970 .

[12]  E. Davidson,et al.  Strategies for analyzing data from video fluorometric monitoring of liquid chromatographic effluents , 1981 .

[13]  A. Nouy A generalized spectral decomposition technique to solve a class of linear stochastic partial differential equations , 2007 .

[14]  Tamara G. Kolda,et al.  Cross-language information retrieval using PARAFAC2 , 2007, KDD '07.

[15]  Zizhong Chen,et al.  Condition Numbers of Gaussian Random Matrices , 2005, SIAM J. Matrix Anal. Appl..

[16]  A. Nouy Proper Generalized Decompositions and Separated Representations for the Numerical Solution of High Dimensional Stochastic Problems , 2010 .

[17]  F. Chinesta,et al.  A Short Review in Model Order Reduction Based on Proper Generalized Decomposition , 2018 .

[18]  Daniel Kressner,et al.  A literature survey of low‐rank tensor approximation techniques , 2013, 1302.7121.

[19]  Martin J. Mohlenkamp,et al.  Numerical operator calculus in higher dimensions , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[20]  Michael W. Berry,et al.  Discussion Tracking in Enron Email using PARAFAC. , 2008 .

[21]  H. Matthies,et al.  Partitioned treatment of uncertainty in coupled domain problems: A separated representation approach , 2013, 1305.6818.

[22]  V. Rokhlin,et al.  A fast randomized algorithm for overdetermined linear least-squares regression , 2008, Proceedings of the National Academy of Sciences.

[23]  A. Edelman Eigenvalues and condition numbers of random matrices , 1988 .

[24]  A. Nouy Generalized spectral decomposition method for solving stochastic finite element equations : Invariant subspace problem and dedicated algorithms , 2008 .

[25]  Ivan Oseledets,et al.  Tensor-Train Decomposition , 2011, SIAM J. Sci. Comput..

[26]  W. Hackbusch Tensor Spaces and Numerical Tensor Calculus , 2012, Springer Series in Computational Mathematics.

[27]  Gregory Beylkin,et al.  Randomized interpolative decomposition of separated representations , 2013, J. Comput. Phys..

[28]  Rasmus Bro,et al.  A comparison of algorithms for fitting the PARAFAC model , 2006, Comput. Stat. Data Anal..

[29]  Gianluca Iaccarino,et al.  A least-squares approximation of partial differential equations with high-dimensional random inputs , 2009, J. Comput. Phys..

[30]  G. Iaccarino,et al.  Non-intrusive low-rank separated approximation of high-dimensional stochastic models , 2012, 1210.1532.

[31]  Boris N. Khoromskij,et al.  Tensor-Structured Galerkin Approximation of Parametric and Stochastic Elliptic PDEs , 2011, SIAM J. Sci. Comput..