Continuous change detection and classification of land cover using all available Landsat data

[1]  C. Woodcock,et al.  Continuous monitoring of forest disturbance using all available Landsat imagery , 2012 .

[2]  Alan H. Strahler,et al.  Change-vector analysis in multitemporal space: a tool to detect and categorize land-cover change pro , 1994 .

[3]  M. Friedl,et al.  Detecting interannual variation in deciduous broadleaf forest phenology using Landsat TM/ETM+ data , 2013 .

[4]  Lars Eklundh,et al.  Mapping insect defoliation in Scots pine with MODIS time-series data , 2009 .

[5]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.

[6]  Zhiqiang Yang,et al.  Detecting trends in forest disturbance and recovery using yearly Landsat time series: 1. LandTrendr — Temporal segmentation algorithms , 2010 .

[7]  D. Ruppert,et al.  A Note on Computing Robust Regression Estimates via Iteratively Reweighted Least Squares , 1988 .

[8]  William Dumouchel,et al.  Integrating a robust option into a multiple regression computing environment , 1992 .

[9]  J. Townshend,et al.  African Land-Cover Classification Using Satellite Data , 1985, Science.

[10]  James R. Anderson,et al.  A land use and land cover classification system for use with remote sensor data , 1976 .

[11]  A. Lacis,et al.  Calculation of radiative fluxes from the surface to top of atmosphere based on ISCCP and other global data sets: Refinements of the radiative transfer model and the input data , 2004 .

[12]  J. Vogelmann,et al.  Monitoring forest changes in the southwestern United States using multitemporal Landsat data , 2009 .

[13]  Zhe Zhu,et al.  Toward near real-time monitoring of forest disturbance by fusion of MODIS and Landsat data , 2013 .

[14]  Zhe Zhu,et al.  Object-based cloud and cloud shadow detection in Landsat imagery , 2012 .

[15]  W. Cohen,et al.  North American forest disturbance mapped from a decadal Landsat record , 2008 .

[16]  C. Justice,et al.  High-Resolution Global Maps of 21st-Century Forest Cover Change , 2013, Science.

[17]  C. Woodcock,et al.  Assessment of spectral, polarimetric, temporal, and spatial dimensions for urban and peri-urban land cover classification using Landsat and SAR data , 2012 .

[18]  C. Justice,et al.  Atmospheric correction of visible to middle-infrared EOS-MODIS data over land surfaces: Background, operational algorithm and validation , 1997 .

[19]  Robert E. Wolfe,et al.  A Landsat surface reflectance dataset for North America, 1990-2000 , 2006, IEEE Geoscience and Remote Sensing Letters.

[20]  Ranga B. Myneni,et al.  The impact of gridding artifacts on the local spatial properties of MODIS data : Implications for validation, compositing, and band-to-band registration across resolutions , 2006 .

[21]  Alan H. Strahler,et al.  Fuzzy Neural Network Classification of Global Land Cover from a 1° AVHRR Data Set , 1999 .

[22]  K. Rutchey,et al.  Inland Wetland Change Detection in the Everglades Water Conservation Area 2A Using a Time Series of Normalized Remotely Sensed Data , 1995 .

[23]  Warren B. Cohen,et al.  Trajectory-based change detection for automated characterization of forest disturbance dynamics , 2007 .

[24]  Darrel L. Williams,et al.  Landsat-7 Long-Term Acquisition Plan: Development and Validation , 2006 .

[25]  Rob J Hyndman,et al.  Detecting trend and seasonal changes in satellite image time series , 2010 .

[26]  Martin Jung,et al.  Exploiting synergies of global land cover products for carbon cycle modeling , 2006 .

[27]  P. Levelt,et al.  ESA's sentinel missions in support of Earth system science , 2012 .

[28]  Zhe Zhu,et al.  Automated cloud, cloud shadow, and snow detection in multitemporal Landsat data: An algorithm designed specifically for monitoring land cover change , 2014 .

[29]  D. Roya,et al.  Prototyping a global algorithm for systematic fire-affected area mapping using MODIS time series data , 2005 .

[30]  Peter T. Wolter,et al.  Improved forest classification in the northern Lake States using multi-temporal Landsat imagery , 1995 .

[31]  Dianne P. O’LEARYt ROBUST REGRESSION COMPUTATION USING ITERATIVELY REWEIGHTED LEAST SQUARES * , 2022 .

[32]  R. Lunetta,et al.  Land-cover change detection using multi-temporal MODIS NDVI data , 2006 .

[33]  Giles M. Foody,et al.  Status of land cover classification accuracy assessment , 2002 .

[34]  Josef Aschbacher,et al.  The European Earth monitoring (GMES) programme: Status and perspectives , 2012 .

[35]  Ashbindu Singh,et al.  Review Article Digital change detection techniques using remotely-sensed data , 1989 .

[36]  C. Woodcock,et al.  An assessment of several linear change detection techniques for mapping forest mortality using multitemporal landsat TM data , 1996 .

[37]  J. Townshend,et al.  Global land cover classi(cid:142) cation at 1 km spatial resolution using a classi(cid:142) cation tree approach , 2004 .

[38]  Hugo Carrão,et al.  Contribution of multispectral and multitemporal information from MODIS images to land cover classification , 2008 .

[39]  P. Holland,et al.  Robust regression using iteratively reweighted least-squares , 1977 .

[40]  N. C. Strugnell,et al.  First operational BRDF, albedo nadir reflectance products from MODIS , 2002 .

[41]  Suming Jin,et al.  MODIS time-series imagery for forest disturbance detection and quantification of patch size effects , 2005 .

[42]  Geoff Smith,et al.  The characterisation and measurement of land cover change through remote sensing: problems in operational applications? , 2003 .

[43]  Matthias Drusch,et al.  Sentinel-2: ESA's Optical High-Resolution Mission for GMES Operational Services , 2012 .

[44]  Limin Yang,et al.  Development of a 2001 National land-cover database for the United States , 2004 .

[45]  M. Bauer,et al.  Digital change detection in forest ecosystems with remote sensing imagery , 1996 .

[46]  R. Lark,et al.  Classification as a first step in the interpretation of temporal and spatial variation of crop yield , 1997 .

[47]  C. Woodcock,et al.  Monitoring land-use change in the Pearl River Delta using Landsat TM , 2002 .

[48]  W. Cohen,et al.  Using Landsat-derived disturbance history (1972-2010) to predict current forest structure , 2012 .

[49]  J. Paruelo,et al.  Land cover classification in the Argentine Pampas using multi-temporal Landsat TM data , 2003 .

[50]  S. Goward,et al.  An automated approach for reconstructing recent forest disturbance history using dense Landsat time series stacks , 2010 .

[51]  Martha C. Anderson,et al.  Free Access to Landsat Imagery , 2008, Science.

[52]  J. Hill,et al.  Coupling spectral unmixing and trend analysis for monitoring of long-term vegetation dynamics in Mediterranean rangelands , 2003 .

[53]  C. Woodcock,et al.  The factor of scale in remote sensing , 1987 .

[54]  Limin Yang,et al.  Development of a global land cover characteristics database and IGBP DISCover from 1 km AVHRR data , 2000 .

[55]  Damien Sulla-Menashe,et al.  MODIS Collection 5 global land cover: Algorithm refinements and characterization of new datasets , 2010 .

[56]  Alan H. Strahler,et al.  Global land cover mapping from MODIS: algorithms and early results , 2002 .

[57]  Michael A. Wulder,et al.  Landsat continuity: Issues and opportunities for land cover monitoring , 2008 .

[58]  Daniel Miller Runfola,et al.  Improving forest type discrimination with mixed lifeform classes using fuzzy classification thresholds informed by field observations , 2010 .

[59]  Curtis E. Woodcock,et al.  Monitoring large areas for forest change using Landsat: Generalization across space, time and Landsat sensors , 2001 .

[60]  Valerie A. Thomas,et al.  Fitting the Multitemporal Curve: A Fourier Series Approach to the Missing Data Problem in Remote Sensing Analysis , 2012, IEEE Transactions on Geoscience and Remote Sensing.

[61]  N. Coops,et al.  Estimation of insect infestation dynamics using a temporal sequence of Landsat data , 2008 .

[62]  D. O’Leary Robust regression computation computation using iteratively reweighted least squares , 1990 .

[63]  John Bell,et al.  A review of methods for the assessment of prediction errors in conservation presence/absence models , 1997, Environmental Conservation.

[64]  Pol Coppin,et al.  Review ArticleDigital change detection methods in ecosystem monitoring: a review , 2004 .

[65]  J. Mustard,et al.  Wavelet analysis of MODIS time series to detect expansion and intensification of row-crop agriculture in Brazil , 2008 .

[66]  Warren B. Cohen,et al.  Detecting trends in forest disturbance and recovery using yearly Landsat time series: 2. TimeSync — Tools for calibration and validation , 2010 .

[67]  W. Cohen,et al.  Comparison of Tasseled Cap-based Landsat data structures for use in forest disturbance detection , 2005 .

[68]  D. Roberts,et al.  A comparison of methods for monitoring multitemporal vegetation change using Thematic Mapper imagery , 2002 .