暂无分享,去创建一个
[1] Sumeetpal S. Singh,et al. Forward Smoothing using Sequential Monte Carlo , 2010, 1012.5390.
[2] Ali Taylan Cemgil,et al. Bayesian Inference for Nonnegative Matrix Factorisation Models , 2009, Comput. Intell. Neurosci..
[3] D. Pierre. Forward Smoothing Using Sequential Monte Carlo , 2009 .
[4] Ali Taylan Cemgil,et al. Nonnegative matrix factorizations as probabilistic inference in composite models , 2009, 2009 17th European Signal Processing Conference.
[5] H. Sebastian Seung,et al. Learning the parts of objects by non-negative matrix factorization , 1999, Nature.
[6] Gianluigi Mongillo,et al. Online Learning with Hidden Markov Models , 2008, Neural Computation.
[7] Francis R. Bach,et al. Online Learning for Latent Dirichlet Allocation , 2010, NIPS.
[8] H. Sebastian Seung,et al. Algorithms for Non-negative Matrix Factorization , 2000, NIPS.
[9] Jason J. Ford,et al. On‐line almost‐sure parameter estimation for partially observed discrete‐time linear systems with known noise characteristics , 2002 .
[10] Simon J. Godsill,et al. On sequential Monte Carlo sampling methods for Bayesian filtering , 2000, Stat. Comput..
[11] Guillermo Sapiro,et al. Online Learning for Matrix Factorization and Sparse Coding , 2009, J. Mach. Learn. Res..
[12] Ruslan Salakhutdinov,et al. Probabilistic Matrix Factorization , 2007, NIPS.
[13] Geoffrey J. Gordon,et al. A Unified View of Matrix Factorization Models , 2008, ECML/PKDD.
[14] Tamara G. Kolda,et al. Tensor Decompositions and Applications , 2009, SIAM Rev..
[15] Télécom ParisTech. ONLINE SEQUENTIAL MONTE CARLO EM ALGORITHM , 2009 .
[16] Olivier Capp'e. Online EM Algorithm for Hidden Markov Models , 2009, 0908.2359.
[17] Arnaud Doucet,et al. An overview of sequential Monte Carlo methods for parameter estimation in general state-space models , 2009 .
[18] Serhat Selcuk Bucak,et al. Incremental subspace learning via non-negative matrix factorization , 2009, Pattern Recognit..
[19] Yehuda Koren,et al. Matrix Factorization Techniques for Recommender Systems , 2009, Computer.