Efficient visualization of high‐order finite elements

A general method for the post‐processing treatment of high‐order finite element fields is presented. The method applies to general polynomial fields, including discontinuous finite element fields. The technique uses error estimation and h‐refinement to provide an optimal visualization grid. Some filtering is added to the algorithm in order to focus the refinement on a visualization plane or on the computation of one single iso‐zero surface. 2D and 3D examples are provided that illustrate the power of the technique. In addition, schemes and algorithms that are discussed in the paper are readily available as part of an open source project that is developed by the authors, namely Gmsh. Copyright © 2006 John Wiley & Sons, Ltd.

[1]  M. Berger,et al.  Adaptive mesh refinement for hyperbolic partial differential equations , 1982 .

[2]  B. Szabó,et al.  A posteriori error indicators for the p-version of the finite element method , 1983 .

[3]  William E. Lorensen,et al.  Marching cubes: A high resolution 3D surface construction algorithm , 1987, SIGGRAPH.

[4]  Chi-Wang Shu,et al.  TVB Runge-Kutta local projection discontinuous galerkin finite element method for conservation laws. II: General framework , 1989 .

[5]  Jack J. Dongarra,et al.  A set of level 3 basic linear algebra subprograms , 1990, TOMS.

[6]  Charles D. Hansen,et al.  Massively parallel isosurface extraction , 1992, Proceedings Visualization '92.

[7]  T. Todd Elvins,et al.  A survey of algorithms for volume visualization , 1992, COMG.

[8]  Ivo Babuska,et al.  The p and h-p Versions of the Finite Element Method, Basic Principles and Properties , 1994, SIAM Rev..

[9]  Enrico Gobbetti,et al.  Discontinuous Finite Element Visualization , 1998 .

[10]  Andrew H. Gee,et al.  Regularised marching tetrahedra: improved iso-surface extraction , 1999, Comput. Graph..

[11]  Timothy C. Warburton,et al.  Basis Functions for Triangular and Quadrilateral High-Order Elements , 1999, SIAM J. Sci. Comput..

[12]  Harold L. Atkins,et al.  Eigensolution analysis of the discontinuous Galerkin method with non-uniform grids , 2001 .

[13]  P. Fischer,et al.  High-Order Methods for Incompressible Fluid Flow , 2002 .

[14]  Kunibert G. Siebert,et al.  Multiresolution Visualization of Higher Order Adaptive Finite Element Simulations , 2003, Computing.

[15]  Jean-François Remacle,et al.  An Adaptive Discontinuous Galerkin Technique with an Orthogonal Basis Applied to Compressible Flow Problems , 2003, SIAM Rev..

[16]  Mark Ainsworth,et al.  Dispersive and dissipative behaviour of high order discontinuous Galerkin finite element methods , 2004 .

[17]  Jean-François Remacle,et al.  Efficient Discontinuous Galerkin Methods for solving acoustic problems , 2005 .

[18]  M. E. Galassi,et al.  GNU SCIENTI C LIBRARY REFERENCE MANUAL , 2005 .

[19]  J. Remacle,et al.  Anisotropic adaptive simulation of transient flows using discontinuous Galerkin methods , 2005 .