A 21-to-41-GHz High-Gain Low Noise Amplifier With Triple-Coupled Technique for Multiband Wireless Applications

This brief presents a wideband millimeter-wave (mm-Wave) low noise amplifier (LNA) with a triple-coupled technique for multiband wireless applications. To enlarge the gain and reduce the supply voltage, a modified cascode topology exploiting a triple-coupled transformer is developed. Thanks to the transformer, the transconductance of the common-gate (CG) transistor of the cascode topology is also effectively boosted, and hence the gain is further increased. Furthermore, high-order networks, which are realized by combinations of <inline-formula> <tex-math notation="LaTeX">$\pi $ </tex-math></inline-formula>- and <italic>T/L</italic>-type structures or transformers, are employed to implement the input, inter-stage, and output impedance matchings. They significantly broaden the bandwidth of the circuit. The LNA is demonstrated using a commercial 65-nm CMOS process. The measurement results show that the circuit achieves a maximum gain of 28.5 dB and a 3-dB gain bandwidth of 20 GHz with 32-mW dc power consumption (<inline-formula> <tex-math notation="LaTeX">$P_{dc}$ </tex-math></inline-formula>). The measured noise figure (NF) and input 1-dB gain compression point (<inline-formula> <tex-math notation="LaTeX">$IP_{1dB}$ </tex-math></inline-formula>) are 2.7~3.2 dB and −24.6~−20.4 dBm, respectively, over the entire operating bandwidth.

[1]  Chau-Ching Chiong,et al.  Analysis and Design of Millimeter-Wave Low-Voltage CMOS Cascode LNA With Magnetic Coupled Technique , 2012, IEEE Transactions on Microwave Theory and Techniques.

[2]  Deukhyoun Heo,et al.  A Continually-Stepped Variable-Gain LNA in 65-nm CMOS Enabled by a Tunable-Transformer for mm-Wave 5G Communications , 2019, 2019 IEEE MTT-S International Microwave Symposium (IMS).

[3]  Cam Nguyen,et al.  Dual Q/V-Band SiGe BiCMOS Low Noise Amplifiers Using Q-Enhanced Metamaterial Transmission Lines , 2021, IEEE Transactions on Circuits and Systems II: Express Briefs.

[4]  Abdolali Abdipour,et al.  A 33-GHz LNA for 5G Wireless Systems in 28-nm Bulk CMOS , 2018, IEEE Transactions on Circuits and Systems II: Express Briefs.

[5]  Ping Gui,et al.  A Transformer Feedback ${G}_{m}$ -Boosting Technique for Gain Improvement and Noise Reduction in mm-Wave Cascode LNAs , 2016, IEEE Transactions on Microwave Theory and Techniques.

[6]  Gabriel M. Rebeiz,et al.  A wideband 60 GHz LNA with 3.3 dB minimum noise figure , 2017, 2017 IEEE MTT-S International Microwave Symposium (IMS).

[7]  Pawan Agarwal,et al.  Current reuse triple-band signal source for multi-band wireless network-on-chip , 2017, 2017 IEEE MTT-S International Microwave Symposium (IMS).

[8]  Gang Liu,et al.  Broadband Millimeter-Wave LNAs (47–77 GHz and 70–140 GHz) Using a T-Type Matching Topology , 2013, IEEE Journal of Solid-State Circuits.

[9]  Quan Xue,et al.  Compact Wideband LNA With Gain and Input Matching Bandwidth Extensions by Transformer , 2017, IEEE Microwave and Wireless Components Letters.

[10]  C. Patrick Yue,et al.  A 24-32GHz gm-boosted LNA with Triple Coupling Input Transformer for 5G Applications , 2019, 2019 IEEE MTT-S International Wireless Symposium (IWS).

[11]  John R. Long,et al.  A 1.7-dB Minimum NF, 22–32-GHz Low-Noise Feedback Amplifier With Multistage Noise Matching in 22-nm FD-SOI CMOS , 2020, IEEE Journal of Solid-State Circuits.

[12]  Hao Zhang,et al.  A 22-to-47 GHz 2-Stage LNA With 22.2 dB Peak Gain by Using Coupled L-Type Interstage Matching Inductors , 2020, IEEE Transactions on Circuits and Systems I: Regular Papers.

[13]  Shahriar Mirabbasi,et al.  A 55–64-GHz Low-Power Small-Area LNA in 65-nm CMOS With 3.8-dB Average NF and ~12.8-dB Power Gain , 2019, IEEE Microwave and Wireless Components Letters.

[14]  Xiang Yi,et al.  Pole-Converging Intrastage Bandwidth Extension Technique for Wideband Amplifiers , 2017, IEEE Journal of Solid-State Circuits.

[15]  B. Floyd,et al.  A 24–44 GHz UWB LNA for 5G Cellular Frequency Bands , 2018, 2018 11th Global Symposium on Millimeter Waves (GSMM).

[16]  T. Rahkonen,et al.  mmWave Frequency Reconfigurable Low Noise Amplifiers for 5G , 2020 .

[17]  Huihua Liu,et al.  A 54.4–90 GHz Low-Noise Amplifier in 65-nm CMOS , 2017, IEEE Journal of Solid-State Circuits.

[18]  S. Mirabbasi,et al.  On the Design of a High-Performance mm-Wave VCO With Switchable Triple-Coupled Transformer , 2019, IEEE Transactions on Microwave Theory and Techniques.