Perspectives on : The response to osmotic challenges Bacterial responses to osmotic challenges

[1]  L. Forrest,et al.  Substrate-bound outward-open state of the betaine transporter BetP provides insights into Na+ coupling , 2014, Nature Communications.

[2]  J. M. Wood,et al.  Analysis of Strains Lacking Known Osmolyte Accumulation Mechanisms Reveals Contributions of Osmolytes and Transporters to Protection against Abiotic Stress , 2014, Applied and Environmental Microbiology.

[3]  M. Becker,et al.  Analysis of putative protomer crosstalk in the trimeric transporter BetP: The heterotrimer approach. , 2014, Biochimica et biophysica acta.

[4]  J. Theriot,et al.  Response of Escherichia coli growth rate to osmotic shock , 2014, Proceedings of the National Academy of Sciences.

[5]  L. Belkoura,et al.  Stimulus analysis of BetP activation under in vivo conditions. , 2014, Biochimica et biophysica acta.

[6]  U. Sauer,et al.  Ubiquinone accumulation improves osmotic-stress tolerance in Escherichia coli. , 2014, Nature chemical biology.

[7]  C. Kung,et al.  The force-from-lipid (FFL) principle of mechanosensitivity, at large and in elements , 2014, Pflügers Archiv - European Journal of Physiology.

[8]  J. Brouwers,et al.  Physicochemical Factors Controlling the Activity and Energy Coupling of an Ionic Strength-gated ATP-binding Cassette (ABC) Transporter* , 2013, The Journal of Biological Chemistry.

[9]  J. Imlay,et al.  The molecular mechanisms and physiological consequences of oxidative stress: lessons from a model bacterium , 2013, Nature Reviews Microbiology.

[10]  J. Shaevitz,et al.  Plasmolysis and cell shape depend on solute outer-membrane permeability during hyperosmotic shock in E. coli. , 2013, Biophysical journal.

[11]  M. Record,et al.  Introductory lecture: interpreting and predicting Hofmeister salt ion and solute effects on biopolymer and model processes using the solute partitioning model. , 2013, Faraday discussions.

[12]  T. Gunasekera,et al.  Transcriptional Responses of Uropathogenic Escherichia coli to Increased Environmental Osmolality Caused by Salt or Urea , 2012, Infection and Immunity.

[13]  P. Blount,et al.  Sensing and responding to membrane tension: the bacterial MscL channel as a model system. , 2012, Biophysical journal.

[14]  M. Meinecke,et al.  Impacts of the Osmolality and the Lumenal Ionic Strength on Osmosensory Transporter ProP in Proteoliposomes* , 2012, The Journal of Biological Chemistry.

[15]  James H Naismith,et al.  Bacterial mechanosensitive channels--MscS: evolution's solution to creating sensitivity in function. , 2012, Annual review of biophysics.

[16]  Bert Poolman,et al.  Macromolecule diffusion and confinement in prokaryotic cells. , 2011, Current opinion in biotechnology.

[17]  M. Record,et al.  Protein diffusion in the periplasm of E. coli under osmotic stress. , 2011, Biophysical journal.

[18]  R. Krämer Bacterial stimulus perception and signal transduction: response to osmotic stress. , 2010, Chemical record.

[19]  B. Martinac,et al.  Protein Localization in Escherichia coli Cells: Comparison of the Cytoplasmic Membrane Proteins ProP, LacY, ProW, AqpZ, MscS, and MscL , 2010 .

[20]  B. Poolman,et al.  Ion Specificity and Ionic Strength Dependence of the Osmoregulatory ABC Transporter OpuA* , 2006, Journal of Biological Chemistry.

[21]  B. Poolman,et al.  Bacterial osmosensing: roles of membrane structure and electrostatics in lipid-protein and protein-protein interactions. , 2004, Biochimica et biophysica acta.

[22]  M. Record,et al.  Large changes in cytoplasmic biopolymer concentration with osmolality indicate that macromolecular crowding may regulate protein–DNA interactions and growth rate in osmotically stressed Escherichia coli K‐12 , 2004, Journal of molecular recognition : JMR.

[23]  J. M. Wood Osmosensing by Bacteria: Signals and Membrane-Based Sensors , 1999, Microbiology and Molecular Biology Reviews.

[24]  M. Record,et al.  Biophysical compensation mechanisms buffering E. coli protein-nucleic acid interactions against changing environments. , 1998, Trends in biochemical sciences.

[25]  M. Record,et al.  Responses of E. coli to osmotic stress: large changes in amounts of cytoplasmic solutes and water. , 1998, Trends in biochemical sciences.

[26]  C. Kunin,et al.  Growth of Escherichia coli in human urine: role of salt tolerance and accumulation of glycine betaine. , 1992, The Journal of infectious diseases.