Every NAND formula on N variables can be evaluated in time O(N^{1/2+eps})

For every NAND formula on N variables, there is a bounded-error O(N 1 2)-time quantum algorithm that evaluates this formula on a black-box input, for ε > 0 an arbitrarily small constant. It follows that the (2 − ε)-th power of the quantum query complexity is a lower bound on the formula size, almost solving in the positive an open problem posed by Laplante, Lee and Szegedy.

[1]  Nader H. Bshouty,et al.  Size-depth tradeoffs for algebraic formulae , 1991, [1991] Proceedings 32nd Annual Symposium of Foundations of Computer Science.

[2]  Michael E. Saks,et al.  A lower bound on the quantum query complexity of read-once functions , 2001, Electron. Colloquium Comput. Complex..

[3]  R. Cleve,et al.  Efficient Quantum Algorithms for Simulating Sparse Hamiltonians , 2005, quant-ph/0508139.

[4]  Troy Lee,et al.  The Quantum Adversary Method and Classical Formula Size Lower Bounds , 2005, Computational Complexity Conference.

[5]  Ronald de Wolf,et al.  Quantum Search on Bounded-Error Inputs , 2003, ICALP.

[6]  Andrew M. Childs,et al.  Discrete-Query Quantum Algorithm for NAND Trees , 2009, Theory Comput..

[7]  Andrew M. Childs,et al.  Quantum information processing in continuous time , 2004 .

[8]  E. Farhi,et al.  Quantum computation and decision trees , 1997, quant-ph/9706062.

[9]  Marc Snir,et al.  Lower Bounds on Probabilistic Linear Decision Trees , 1985, Theor. Comput. Sci..

[10]  Edward Farhi,et al.  A Quantum Algorithm for the Hamiltonian NAND Tree , 2008, Theory Comput..

[11]  R. Cleve,et al.  Quantum algorithms revisited , 1997, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[12]  Miklos Santha On the Monte Carlo Boolean Decision Tree Complexity of Read-Once Formulae , 1995, Random Struct. Algorithms.

[13]  Lov K. Grover A fast quantum mechanical algorithm for database search , 1996, STOC '96.

[14]  Michael E. Saks,et al.  Probabilistic Boolean decision trees and the complexity of evaluating game trees , 1986, 27th Annual Symposium on Foundations of Computer Science (sfcs 1986).