High frequency oscillation in photonic crystal nanolasers

We observed modulated oscillations in lasers of up to 130 GHz by conducting frequency domain measurements on photonic crystal lasers with built-in saturable absorbers. This is an example of how the small volumes of photonic crystal lasers lead to increases in the internal modulation frequencies and enables dramatic improvements of the laser modulation rate.

[1]  E. Yablonovitch,et al.  Inhibited spontaneous emission in solid-state physics and electronics. , 1987, Physical review letters.

[2]  C. R. Mirasso,et al.  Self-pulsating semiconductor lasers: theory and experiment , 1999, physics/9906027.

[3]  Kerry J. Vahala,et al.  Observation of relaxation resonance effects in the field spectrum of semiconductor lasers , 1983 .

[4]  Yong-Hee Lee,et al.  Square-lattice photonic band-gap single-cell laser operating in the lowest-order whispering gallery mode , 2002 .

[5]  Toshihiko Baba,et al.  Photonic crystals and microdisk cavities based on GaInAsP-InP system , 1997 .

[6]  Susumu Noda,et al.  Trapping and emission of photons by a single defect in a photonic bandgap structure , 2000, Nature.

[7]  John,et al.  Strong localization of photons in certain disordered dielectric superlattices. , 1987, Physical review letters.

[8]  Alfred Forchel,et al.  Two-dimensional photonic crystal coupled-defect laser diode , 2003 .

[9]  Kim,et al.  Two-dimensional photonic band-Gap defect mode laser , 1999, Science.

[10]  H. Mabuchi,et al.  Inverse-problem approach to designing photonic crystals for cavity QED experiments. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[11]  Jelena Vucković,et al.  Design of photonic crystal microcavities for cavity QED. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[12]  Shanhui Fan,et al.  Air‐bridge microcavities , 1995 .

[13]  Richart E. Slusher,et al.  Optical Processes in Microcavities , 1993 .

[14]  Machida,et al.  Microcavity semiconductor laser with enhanced spontaneous emission. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[15]  Philippe Regreny,et al.  InP 2D photonic crystal microlasers on silicon wafer: room temperature operation at 1.55 [micro sign]m , 2001 .

[16]  Tawee Tanbun-Ek,et al.  Packaged 1.55 mu m DFB laser with 25 GHz modulation bandwidth , 1994 .

[17]  E. Costard,et al.  Enhanced Spontaneous Emission by Quantum Boxes in a Monolithic Optical Microcavity , 1998 .

[18]  E. Purcell,et al.  Resonance Absorption by Nuclear Magnetic Moments in a Solid , 1946 .

[19]  H. Yokoyama,et al.  Rate equation analysis of microcavity lasers , 1989 .

[20]  Thomas F. Krauss,et al.  Two-dimensional photonic-bandgap structures operating at near-infrared wavelengths , 1996, Nature.

[21]  Axel Scherer,et al.  Quantum dot photonic crystal lasers , 2002 .

[22]  A. Scherer,et al.  Low-Threshold Photonic Crystal Laser , 2002 .

[23]  Oskar Painter,et al.  Experimental demonstration of a high quality factor photonic crystal microcavity , 2003 .

[24]  Dong Hoon Jang,et al.  Room-temperature triangular-lattice two-dimensional photonic band gap lasers operating at 1.54 μm , 2000 .

[25]  John D. O'Brien,et al.  Operation of photonic crystal membrane lasers above room temperature , 2002 .

[26]  Hyatt M. Gibbs,et al.  Optical bistability in semiconductors , 1979 .