Improved random noise attenuation using f−x empirical mode decomposition and local similarity

Conventional f−x empirical mode decomposition (EMD) is an effective random noise attenuation method for use with seismic profiles mainly containing horizontal events. However, when a seismic event is not horizontal, the use of f−x EMD is harmful to most useful signals. Based on the framework of f−x EMD, this study proposes an improved denoising approach that retrieves lost useful signals by detecting effective signal points in a noise section using local similarity and then designing a weighting operator for retrieving signals. Compared with conventional f−x EMD, f−x predictive filtering, and f−x empirical mode decomposition predictive filtering, the new approach can preserve more useful signals and obtain a relatively cleaner denoised image. Synthetic and field data examples are shown as test performances of the proposed approach, thereby verifying the effectiveness of this method.

[1]  Mrinal K. Sen,et al.  Time‐lapse pre‐stack seismic data registration and inversion for CO2 sequestration study at Cranfield , 2014 .

[2]  Yangkang Chen Deblending using a space-varying median filter , 2014 .

[3]  Mirko van der Baan,et al.  Random and coherent noise attenuation by empirical mode decomposition , 2009 .

[4]  Yangkang Chen,et al.  Random Noise Attenuation by a Selective Hybrid Approach Using F-X Empirical Mode Decomposition , 2014 .

[5]  Jiang Yuan,et al.  Deblending using normal moveout and median filtering in common-midpoint gathers , 2014 .

[6]  Guochang Liu,et al.  Time-frequency analysis of seismic data using local attributes , 2011 .

[7]  Yangkang Chen,et al.  An effective method for reducing harmonic distortion in correlated vibroseis data , 2015 .

[8]  Sergey Fomel,et al.  Local seismic attributes , 2007 .

[9]  Mrinal K. Sen,et al.  Time-lapse seismic data registration and inversion for CO2 sequestration study at Cranfield , 2013 .

[10]  Wei Chen,et al.  Noise reduction based on wavelet threshold filtering and ensemble empirical mode decomposition , 2012 .

[11]  Yangkang Chen,et al.  Random noise attenuation by f-x empirical mode decomposition predictive filtering , 2014 .

[12]  S. Fomel,et al.  Shaping regularization in geophysical-estimation problems , 2007 .

[13]  Yangkang Chen,et al.  Application of spectral decomposition using regularized non-stationary autoregression to random noise attenuation , 2015 .

[14]  J. Nasseri,et al.  Random and Coherent Noise Attenuation by Empirical Mode Decomposition , 2011 .

[15]  Zhenchun Li,et al.  Curvelet threshold denoising joint with empirical mode decomposition , 2013 .

[16]  Long Jin,et al.  Time-lapse image registration using the local similarity attribute , 2009 .

[17]  Jingwei Hu,et al.  Iterative deblending of simultaneous-source seismic data using seislet-domain shaping regularization , 2014 .