A Deterministic Filter for non-Gaussian Bayesian Estimation
暂无分享,去创建一个
[1] Habib N. Najm,et al. Stochastic spectral methods for efficient Bayesian solution of inverse problems , 2005, J. Comput. Phys..
[2] Emmanuel D. Blanchard,et al. Polynomial Chaos Approaches to Parameter Estimation and Control Design for Mechanical Systems with Uncertain Parameters , 2010 .
[3] Craig H. Bishop,et al. Adaptive sampling with the ensemble transform Kalman filter , 2001 .
[4] R. Ghanem,et al. Stochastic Finite Elements: A Spectral Approach , 1990 .
[5] C. Fox,et al. Markov chain Monte Carlo Using an Approximation , 2005 .
[6] Jeffrey K. Uhlmann,et al. Unscented filtering and nonlinear estimation , 2004, Proceedings of the IEEE.
[7] P. Bickel,et al. Obstacles to High-Dimensional Particle Filtering , 2008 .
[8] G. Evensen. The ensemble Kalman filter for combined state and parameter estimation , 2009, IEEE Control Systems.
[9] Edward N. Lorenz,et al. Irregularity: a fundamental property of the atmosphere* , 1984 .
[10] Steven Finette,et al. Polynomial Chaos Quantification of the Growth of Uncertainty Investigated with a Lorenz Model , 2010 .
[11] Andrew M. Stuart,et al. Inverse problems: A Bayesian perspective , 2010, Acta Numerica.
[12] P. Houtekamer,et al. A Sequential Ensemble Kalman Filter for Atmospheric Data Assimilation , 2001 .
[13] G. Evensen. Sequential data assimilation with a nonlinear quasi‐geostrophic model using Monte Carlo methods to forecast error statistics , 1994 .
[14] Jeffrey L. Anderson. An Ensemble Adjustment Kalman Filter for Data Assimilation , 2001 .
[15] Hermann G. Matthies,et al. Uncertainty updating in the description of heterogeneous materials , 2010 .
[16] Neri Merhav,et al. Hidden Markov processes , 2002, IEEE Trans. Inf. Theory.
[17] I. Segal,et al. Integrals and operators , 1968 .
[18] Roger G. Ghanem,et al. Identification of Bayesian posteriors for coefficients of chaos expansions , 2010, J. Comput. Phys..
[19] G. Evensen. Using the Extended Kalman Filter with a Multilayer Quasi-Geostrophic Ocean Model , 1992 .
[20] Geir Evensen,et al. The Ensemble Kalman Filter: theoretical formulation and practical implementation , 2003 .
[21] A. Jazwinski. Stochastic Processes and Filtering Theory , 1970 .
[22] D. Luenberger. Optimization by Vector Space Methods , 1968 .
[23] W. K. Hastings,et al. Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .
[24] Dongbin Xiu,et al. A generalized polynomial chaos based ensemble Kalman filter with high accuracy , 2009, J. Comput. Phys..
[25] N. Gordon,et al. Novel approach to nonlinear/non-Gaussian Bayesian state estimation , 1993 .
[26] J. Whitaker,et al. Ensemble Square Root Filters , 2003, Statistical Methods for Climate Scientists.
[27] H. Engl,et al. Regularization of Inverse Problems , 1996 .
[28] Y. Marzouk,et al. A stochastic collocation approach to Bayesian inference in inverse problems , 2009 .
[29] J. Whitaker,et al. Ensemble Data Assimilation without Perturbed Observations , 2002 .
[30] Panos G. Georgopoulos,et al. Uncertainty reduction and characterization for complex environmental fate and transport models: An empirical Bayesian framework incorporating the stochastic response surface method , 2003 .
[31] N. Wiener. The Homogeneous Chaos , 1938 .
[32] Dirk P. Kroese,et al. Kernel density estimation via diffusion , 2010, 1011.2602.
[33] Georg A. Gottwald,et al. Ensemble propagation and continuous matrix factorization algorithms , 2009 .
[34] G. Evensen,et al. Analysis Scheme in the Ensemble Kalman Filter , 1998 .
[35] B. M. Golam Kibria. Bayes Linear Statistics: Theory and Methods , 2008 .
[36] Albert Tarantola,et al. Inverse problem theory - and methods for model parameter estimation , 2004 .
[37] Hermann G. Matthies,et al. Uncertainty Quantification with Stochastic Finite Elements , 2007 .
[38] S. Janson. Gaussian Hilbert Spaces , 1997 .
[39] Gene H. Golub,et al. Matrix computations , 1983 .
[40] R. M. Loynes,et al. Studies In The Theory Of Random Processes , 1966 .
[41] Paul Malliavin,et al. Stochastic Analysis , 1997, Nature.
[42] H. Sorenson,et al. Nonlinear Bayesian estimation using Gaussian sum approximations , 1972 .
[43] G. Evensen. Data Assimilation: The Ensemble Kalman Filter , 2006 .
[44] Benjamin L. Pence,et al. A maximum likelihood approach to recursive polynomial chaos parameter estimation , 2010, Proceedings of the 2010 American Control Conference.
[45] H. Matthies. Stochastic finite elements: Computational approaches to stochastic partial differential equations , 2008 .
[46] Edward N. Lorenz. A look at some details of the growth of initial uncertainties , 2005 .
[47] Nicholas Zabaras,et al. An efficient Bayesian inference approach to inverse problems based on an adaptive sparse grid collocation method , 2009 .