Polymer‐Waveguide‐Based Flexible Tactile Sensor Array for Dynamic Response

A polymer-waveguide-based transparent and flexible force sensor array is proposed, which satisfies the principal requirements for a tactile sensor working on curvilinear surfaces, such as thinfilm architecture (thickness < 150 μm), localized force sensing (ca. 0-3 N), multiple-point re cognition (27 points), bending robustness (10.8% degradation at R = 1.5 mm), and fast response (bandwidth > 16 Hz).

[1]  Sadao Omata,et al.  New tactile sensor like the human hand and its applications , 1992 .

[2]  R. Radwin,et al.  Computer key switch force-displacement characteristics and short-term effects on localized fatigue. , 1999, Ergonomics.

[3]  J. Lima,et al.  A large area force sensor for smart skin applications , 2002, Proceedings of IEEE Sensors.

[4]  Chang Liu,et al.  Institute of Physics Publishing Journal of Micromechanics and Microengineering Development of Polyimide Flexible Tactile Sensor Skin , 2022 .

[5]  Takao Someya,et al.  A large-area, flexible pressure sensor matrix with organic field-effect transistors for artificial skin applications. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[6]  T. Someya,et al.  Conformable, flexible, large-area networks of pressure and thermal sensors with organic transistor active matrixes. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[7]  Joseph Hidler,et al.  MR compatible force sensing system for real-time monitoring of wrist moments during fMRI testing , 2006, Journal of Neuroscience Methods.

[8]  E. Smela,et al.  Stretchable Electrodes with High Conductivity and Photo‐Patternability , 2007 .

[9]  Frank Clemens,et al.  Textile Pressure Sensor Made of Flexible Plastic Optical Fibers , 2008, Sensors.

[10]  Jung Jin Ju,et al.  Highly fluorinated and photocrosslinkable liquid prepolymers for flexible optical waveguides , 2009 .

[11]  R. Koeppe,et al.  Light‐ and Touch‐Point Localization using Flexible Large Area Organic Photodiodes and Elastomer Waveguides , 2009 .

[12]  Min-Cheol Oh,et al.  Optical Pressure Sensors Based on Vertical Directional Coupling With Flexible Polymer Waveguides , 2009, IEEE Photonics Technology Letters.

[13]  Sang‐Woo Kim,et al.  Mechanically Powered Transparent Flexible Charge‐Generating Nanodevices with Piezoelectric ZnO Nanorods , 2009 .

[14]  Javad Dargahi,et al.  A new MRI-compatible optical fiber tactile sensor for use in minimally invasive robotic surgery systems , 2010, European Workshop on Optical Fibre Sensors.

[15]  Benjamin C. K. Tee,et al.  Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers. , 2010, Nature materials.

[16]  J. Boland Flexible electronics: Within touch of artificial skin. , 2010, Nature materials.

[17]  Dong-Ki Kim,et al.  A Touchpad for Force and Location Sensing , 2010 .

[18]  T. Someya,et al.  Stretchable, Large‐area Organic Electronics , 2010, Advanced materials.

[19]  Andrew G. Gillies,et al.  Nanowire active-matrix circuitry for low-voltage macroscale artificial skin. , 2010, Nature materials.

[20]  Hongki Kim,et al.  Capacitive tactile sensor array for touch screen application , 2011 .

[21]  Benjamin C. K. Tee,et al.  Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes. , 2011, Nature nanotechnology.

[22]  Steen G. Hanson,et al.  Optical touch screen based on waveguide sensing , 2011 .

[23]  W. Fang,et al.  Development of patterned carbon nanotubes on a 3D polymer substrate for the flexible tactile sensor application , 2011 .

[24]  Bo Yang,et al.  Triaxial MRI-Compatible Fiber-optic Force Sensor , 2011, IEEE Transactions on Robotics.

[25]  Benjamin C. K. Tee,et al.  Electronic Properties of Transparent Conductive Films of PEDOT:PSS on Stretchable Substrates , 2012 .

[26]  Zhibin Yu,et al.  Compliant Silver Nanowire‐Polymer Composite Electrodes for Bistable Large Strain Actuation , 2012, Advanced materials.

[27]  Benjamin C. K. Tee,et al.  Transparent, Optical, Pressure‐Sensitive Artificial Skin for Large‐Area Stretchable Electronics , 2012, Advanced materials.

[28]  Ruben D. Ponce Wong,et al.  Sensors and Actuators A: Physical , 2022 .

[29]  Benjamin C. K. Tee,et al.  An electrically and mechanically self-healing composite with pressure- and flexion-sensitive properties for electronic skin applications. , 2012, Nature nanotechnology.

[30]  Sung-hoon Ahn,et al.  A flexible and highly sensitive strain-gauge sensor using reversible interlocking of nanofibres. , 2012, Nature materials.

[31]  Nicola Vitiello,et al.  Synthetic and Bio-Artificial Tactile Sensing: A Review , 2013, Sensors.

[32]  Ki-Uk Kyung,et al.  Photocrosslinkable liquid prepolymers for flexible waveguide display applications , 2013 .

[34]  Yonggang Huang,et al.  High performance piezoelectric devices based on aligned arrays of nanofibers of poly(vinylidenefluoride-co-trifluoroethylene) , 2013, Nature Communications.