Nanoscale Room-Temperature Multilayer Skyrmionic Synapse for Deep Spiking Neural Networks

Magnetic skyrmions have attracted considerable interest, especially after their recent experimental demonstration at room temperature in multilayers. The robustness, nanoscale size and non-volatility of skyrmions have triggered a substantial amount of research on skyrmion-based low-power, ultra-dense nanocomputing and neuromorphic systems such as artificial synapses. Room-temperature operation is required to integrate skyrmionic synapses in practical future devices. Here, we numerically propose a nanoscale skyrmionic synapse composed of magnetic multilayers that enables room-temperature device operation tailored for optimal synaptic resolution. We demonstrate that when embedding such multilayer skyrmionic synapses in a simple spiking neural network (SNN) with unsupervised learning via the spike-timing-dependent plasticity rule, we can achieve only a 78% classification accuracy in the MNIST handwritten data set under realistic conditions. We propose that this performance can be significantly improved to about 98.61% by using a deep SNN with supervised learning. Our results illustrate that the proposed skyrmionic synapse can be a potential candidate for future energy-efficient neuromorphic edge computing.

[1]  Bin Gao,et al.  Fully hardware-implemented memristor convolutional neural network , 2020, Nature.

[2]  A. Locatelli,et al.  Room-temperature chiral magnetic skyrmions in ultrathin magnetic nanostructures. , 2016, Nature nanotechnology.

[3]  Chiara Bartolozzi,et al.  Neuromorphic Electronic Circuits for Building Autonomous Cognitive Systems , 2014, Proceedings of the IEEE.

[4]  J. Bland,et al.  Dynamics and switching processes for magnetic bubbles in nanoelements , 2009 .

[5]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[6]  Xiaofei Wang,et al.  Convergence of Edge Computing and Deep Learning: A Comprehensive Survey , 2019, IEEE Communications Surveys & Tutorials.

[7]  C. Pfleiderer,et al.  Emergent electrodynamics of skyrmions in a chiral magnet , 2012, Nature Physics.

[8]  A. Fert,et al.  Skyrmions on the track. , 2013, Nature nanotechnology.

[9]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[10]  A. Khorsand,et al.  Laser-induced magnetic nanostructures with tunable topological properties. , 2013, Physical review letters.

[11]  G. Finocchio,et al.  A strategy for the design of skyrmion racetrack memories , 2014, Scientific Reports.

[12]  Steve B. Furber,et al.  Robustness of spiking Deep Belief Networks to noise and reduced bit precision of neuro-inspired hardware platforms , 2015, Front. Neurosci..

[13]  Damien Querlioz,et al.  Neuromorphic computing with nanoscale spintronic oscillators , 2017, Nature.

[14]  Danna Zhou,et al.  d. , 1934, Microbial pathogenesis.

[15]  A. Fert,et al.  Hybrid chiral domain walls and skyrmions in magnetic multilayers , 2017, Science Advances.

[16]  Carver A. Mead,et al.  Neuromorphic electronic systems , 1990, Proc. IEEE.

[17]  Yan Zhou,et al.  Magnetic skyrmion-based synaptic devices , 2016, Nanotechnology.

[18]  Walter Senn,et al.  Learning Real-World Stimuli in a Neural Network with Spike-Driven Synaptic Dynamics , 2007, Neural Computation.

[19]  Xing Chen,et al.  A compact skyrmionic leaky-integrate-fire spiking neuron device. , 2018, Nanoscale.

[20]  Timothée Masquelier,et al.  Deep Learning in Spiking Neural Networks , 2018, Neural Networks.

[21]  Deliang Fan,et al.  A tunable magnetic skyrmion neuron cluster for energy efficient artificial neural network , 2017, Design, Automation & Test in Europe Conference & Exhibition (DATE), 2017.

[22]  Dharmendra S. Modha,et al.  The cat is out of the bag: cortical simulations with 109 neurons, 1013 synapses , 2009, Proceedings of the Conference on High Performance Computing Networking, Storage and Analysis.

[23]  F. García-Sánchez,et al.  The design and verification of MuMax3 , 2014, 1406.7635.

[24]  S. Sarma,et al.  Spintronics: Fundamentals and applications , 2004, cond-mat/0405528.

[25]  A. Fert,et al.  Nucleation, stability and current-induced motion of isolated magnetic skyrmions in nanostructures. , 2013, Nature nanotechnology.

[26]  Andrew S. Cassidy,et al.  A million spiking-neuron integrated circuit with a scalable communication network and interface , 2014, Science.

[27]  D. Ralph,et al.  Spin Torque Study of the Spin Hall Conductivity and Spin Diffusion Length in Platinum Thin Films with Varying Resistivity. , 2015, Physical review letters.

[28]  A. Tulapurkar,et al.  Large voltage-induced magnetic anisotropy change in a few atomic layers of iron. , 2009, Nature nanotechnology.

[29]  A. Fert,et al.  Additive interfacial chiral interaction in multilayers for stabilization of small individual skyrmions at room temperature. , 2016, Nature nanotechnology.

[30]  Guigang Zhang,et al.  Deep Learning , 2016, Int. J. Semantic Comput..

[31]  Hesham Mostafa,et al.  Surrogate Gradient Learning in Spiking Neural Networks: Bringing the Power of Gradient-based optimization to spiking neural networks , 2019, IEEE Signal Processing Magazine.

[32]  M. Stiles,et al.  Neuromorphic spintronics , 2020, Nature Electronics.

[33]  Osvaldo Simeone,et al.  Federated Neuromorphic Learning of Spiking Neural Networks for Low-Power Edge Intelligence , 2019, ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[34]  Romain Brette,et al.  Neuroinformatics Original Research Article Brian: a Simulator for Spiking Neural Networks in Python , 2022 .

[35]  Motohiko Ezawa,et al.  Skyrmion-electronics: writing, deleting, reading and processing magnetic skyrmions toward spintronic applications , 2019, Journal of physics. Condensed matter : an Institute of Physics journal.

[36]  Massimiliano Di Ventra,et al.  Experimental demonstration of associative memory with memristive neural networks , 2009, Neural Networks.

[37]  G. Schütz,et al.  The role of temperature and drive current in skyrmion dynamics , 2020 .

[38]  Giacomo Indiveri,et al.  A neuromorphic systems approach to in-memory computing with non-ideal memristive devices: From mitigation to exploitation , 2018, Faraday discussions.

[39]  Indranil Chakraborty,et al.  Technology Aware Training in Memristive Neuromorphic Systems for Nonideal Synaptic Crossbars , 2017, IEEE Transactions on Emerging Topics in Computational Intelligence.

[40]  J. W. Brown Thermal Fluctuations of a Single-Domain Particle , 1963 .

[41]  Benjamin Krueger,et al.  Observation of room-temperature magnetic skyrmions and their current-driven dynamics in ultrathin metallic ferromagnets. , 2015, Nature materials.

[42]  I. Dzyaloshinsky A thermodynamic theory of “weak” ferromagnetism of antiferromagnetics , 1958 .

[43]  PHARMACOLOGY AND NERVE ENDINGS , 1934 .

[45]  Simone Finizio,et al.  Magnetic skyrmion artificial synapse for neuromorphic computing , 2019, ArXiv.

[46]  G. Beach,et al.  Twisted domain walls and skyrmions in perpendicularly magnetized multilayers , 2018, Physical Review B.

[47]  Yusuf Leblebici,et al.  Neuromorphic computing with multi-memristive synapses , 2017, Nature Communications.

[48]  Weisheng Zhao,et al.  Low-Power (1T1N) Skyrmionic Synapses for Spiking Neuromorphic Systems , 2018, IEEE Access.

[49]  A. Umerski,et al.  Theory of tunneling magnetoresistance of an epitaxial Fe/MgO/Fe(001) junction , 2001 .

[50]  Xing Chen,et al.  Emerging Neuromorphic Computing Paradigms Exploring Magnetic Skyrmions , 2018, 2018 IEEE Computer Society Annual Symposium on VLSI (ISVLSI).

[51]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[52]  A. Fert,et al.  Room-Temperature Current-Induced Generation and Motion of sub-100 nm Skyrmions. , 2017, Nano letters.

[53]  P. Böni,et al.  Spin Transfer Torques in MnSi at Ultralow Current Densities , 2010, Science.

[54]  J. Miltat,et al.  Path to collapse for an isolated Néel skyrmion , 2016, 1601.02875.

[55]  Benjamin Krueger,et al.  Magnetic Skyrmion as a Nonlinear Resistive Element: A Potential Building Block for Reservoir Computing , 2017, 1702.04298.

[56]  Matthew Cook,et al.  Unsupervised learning of digit recognition using spike-timing-dependent plasticity , 2015, Front. Comput. Neurosci..

[57]  T. Serrano-Gotarredona,et al.  STDP and STDP variations with memristors for spiking neuromorphic learning systems , 2013, Front. Neurosci..

[58]  Kaiming He,et al.  Exploring the Limits of Weakly Supervised Pretraining , 2018, ECCV.

[59]  Mathias Kläui,et al.  Perspective: Magnetic skyrmions—Overview of recent progress in an active research field , 2018, Journal of Applied Physics.

[60]  J. Xia,et al.  An Improved Racetrack Structure for Transporting a Skyrmion , 2017, Scientific Reports.

[61]  Steve B. Furber,et al.  The SpiNNaker Project , 2014, Proceedings of the IEEE.

[62]  Johannes Schemmel,et al.  A wafer-scale neuromorphic hardware system for large-scale neural modeling , 2010, Proceedings of 2010 IEEE International Symposium on Circuits and Systems.

[63]  H. Dale Pharmacology and Nerve-Endings , 1935 .

[64]  Y. Tokura,et al.  Skyrmion flow near room temperature in an ultralow current density , 2012, Nature Communications.

[65]  J. Nývlt Nucleation , 1991 .

[66]  A. Panchula,et al.  Giant tunnelling magnetoresistance at room temperature with MgO (100) tunnel barriers , 2004, Nature materials.

[67]  Masahiro Sato,et al.  Ultrafast generation of skyrmionic defects with vortex beams: Printing laser profiles on magnets , 2016, 1609.06816.

[68]  N. Kiselev,et al.  Chiral magnetic skyrmions with arbitrary topological charge , 2018, Physical Review B.

[69]  T. Devolder,et al.  Planar patterned magnetic media obtained by ion irradiation , 1998, Science.

[70]  Jennifer Hasler,et al.  Finding a roadmap to achieve large neuromorphic hardware systems , 2013, Front. Neurosci..

[71]  Yan Zhou,et al.  Skyrmions in Magnetic Tunnel Junctions. , 2018, ACS applied materials & interfaces.

[72]  Matthew Cook,et al.  Fast-classifying, high-accuracy spiking deep networks through weight and threshold balancing , 2015, 2015 International Joint Conference on Neural Networks (IJCNN).

[73]  Kaushik Roy,et al.  Hybrid Spintronic-CMOS Spiking Neural Network With On-Chip Learning: Devices, Circuits and Systems , 2015, ArXiv.

[74]  S. Le,et al.  Perpendicular spin transfer torque magnetic random access memories with high spin torque efficiency and thermal stability for embedded applications (invited) , 2014 .

[75]  Farnood Merrikh-Bayat,et al.  Training and operation of an integrated neuromorphic network based on metal-oxide memristors , 2014, Nature.

[76]  A. Locatelli,et al.  Current-Driven Skyrmion Dynamics and Drive-Dependent Skyrmion Hall Effect in an Ultrathin Film , 2019, Physical Review Applied.