Communication in a protein stack: electron transfer between cytochrome c and bilirubin oxidase within a polyelectrolyte multilayer.

[1]  F. Scheller,et al.  A self-assembled cytochrome c/xanthine oxidase multilayer arrangement on gold , 2007 .

[2]  F. Scheller,et al.  Direct and Cytochrome c Mediated Electrochemistry of Bilirubin Oxidase on Gold , 2007 .

[3]  F C Walsh,et al.  Biofuel cells and their development. , 2006, Biosensors & bioelectronics.

[4]  S. Shleev,et al.  Direct heterogeneous electron transfer reactions of fungal laccases at bare and thiol-modified gold electrodes , 2006 .

[5]  E. Ferapontova,et al.  Direct electrochemistry of recombinant tobacco peroxidase on gold , 2005 .

[6]  A. Salimi,et al.  Direct electrochemistry and electrocatalytic activity of catalase incorporated onto multiwall carbon nanotubes-modified glassy carbon electrode. , 2005, Analytical biochemistry.

[7]  Adam Heller,et al.  A Miniature Membrane‐less Biofuel Cell Operating at +0.60 V under Physiological Conditions , 2004, Chembiochem : a European journal of chemical biology.

[8]  S. Shleev,et al.  Direct heterogeneous electron transfer reactions of bilirubin oxidase at a spectrographic graphite electrode , 2004 .

[9]  H. Möhwald,et al.  Elektroaktive Cytochrom‐c‐Multischichten in einer Polyelektrolytanordnung , 2004 .

[10]  F. Scheller,et al.  Electroactive cytochrome c multilayers within a polyelectrolyte assembly. , 2004, Angewandte Chemie.

[11]  E. Calvo,et al.  Supramolecular architectures of electrostatic self-assembled glucose oxidase enzyme electrodes. , 2004, Chemphyschem : a European journal of chemical physics and physical chemistry.

[12]  Jing Chen,et al.  Direct electron transfer and bioelectrocatalysis of hemoglobin at a carbon nanotube electrode. , 2004, Analytical biochemistry.

[13]  P. Dutton,et al.  Reversible redox energy coupling in electron transfer chains , 2004, Nature.

[14]  J. Turrens,et al.  Mitochondrial formation of reactive oxygen species , 2003, The Journal of physiology.

[15]  S. Dong,et al.  Direct electrochemistry and surface plasmon resonance characterization of alternate layer-by-layer self-assembled DNA-myoglobin thin films on chemically modified gold surfaces , 2003 .

[16]  P. Brookes,et al.  Mitochondria: regulators of signal transduction by reactive oxygen and nitrogen species. , 2002, Free radical biology & medicine.

[17]  P. Schaaf,et al.  Protein adsorption onto auto-assembled polyelectrolyte films. , 2002, Biomolecular engineering.

[18]  Adam Heller,et al.  On the relationship between the characteristics of bilirubin oxidases and O2 cathodes based on their wiring , 2002 .

[19]  Fred Lisdat,et al.  Superoxide sensor based on cytochrome c immobilized on mixed-thiol SAM with a new calibration method , 2002 .

[20]  Frieder W. Scheller,et al.  Amperometric biosensor based on a functionalized gold electrode for the detection of antioxidants. , 2002, Biosensors & bioelectronics.

[21]  F. Mizutani,et al.  Layer-by-layer construction of an active multilayer enzyme electrode applicable for direct amperometric determination of cholesterol , 2001 .

[22]  L. Gorton,et al.  Direct electron transfer between the heme of cellobiose dehydrogenase and thiol modified gold electrodes , 2000 .

[23]  Itamar Willner,et al.  A non-compartmentalized glucose ∣ O2 biofuel cell by bioengineered electrode surfaces , 1999 .

[24]  G. Decher,et al.  Layer-by-layer assembled protein/polymer hybrid films: nanoconstruction via specific recognition , 1998 .

[25]  J. Rusling Enzyme Bioelectrochemistry in Cast Biomembrane-Like Films , 1998 .

[26]  James F. Rusling,et al.  Direct Electrochemistry of Myoglobin and Cytochrome P450cam in Alternate Layer-by-Layer Films with DNA and Other Polyions , 1998 .

[27]  I. Taniguchi,et al.  Effect of the Structure of Modifiers Adsorbed on Gold Single Crystal Surfaces on the Promotion of the Electrode Reaction of Cytochrome c. , 1997 .

[28]  W. Knoll,et al.  Investigation of the electrode reaction of cytochrome c through mixed self-assembled monolayers of alkanethiols on gold(111) surfaces , 1997 .

[29]  Gero Decher,et al.  Fuzzy Nanoassemblies: Toward Layered Polymeric Multicomposites , 1997 .

[30]  Shaojun Dong,et al.  Self-assembled monolayers of thiols on gold electrodes for bioelectrochemistry and biosensors , 1997 .

[31]  Itamar Willner,et al.  Development of novel biosensor enzyme electrodes: Glucose oxidase multilayer arrays immobilized onto self‐assembled monolayers on electrodes , 1993 .

[32]  Michael J. Tarlov,et al.  Characterization of cytochrome c/alkanethiolate structures prepared by self-assembly on gold , 1993 .

[33]  G. Brudvig,et al.  Mechanism for photosynthetic O2 evolution. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[34]  K. Kano,et al.  An electrochemical approach to the studies of biological redox reactions and their applications to biosensors, bioreactors, and biofuel cells. , 2001, Journal of bioscience and bioengineering.

[35]  C. Danilowicz,et al.  Layer-by-layer electrostatic deposition of biomolecules on surfaces for molecular recognition, redox mediation and signal generation. , 2000, Faraday discussions.

[36]  C. McNeil,et al.  Direct electron transfer bioelectronic interfaces: application to clinical analysis. , 1995, Biosensors & bioelectronics.

[37]  A. Glazer,et al.  PHOTOCHEMICAL REACTION CENTERS: STRUCTURE, ORGANIZATION, AND FUNCTION , 1987 .