On the wondrous stability of ALP dark matter

The very low mass and small coupling of axion-like particles (ALPs) is usually taken as a guarantor of their cosmological longevity, making them excellent dark matter candidates. That said, Bose enhancement could stimulate decays and challenge this paradigm. Here, we analyze and review the cosmological decay of ALPs into photons, taking Bose enhancement into account, thereby going beyond the usual naive perturbative estimate. At first glance, this calculation seems to yield an exponentially growing resonance and therefore an extremely fast decay rate. However, the redshifting of the decay products due to the expansion of the Universe as well as the effective plasma mass of the photon can prevent an efficient resonance. While this result agrees with existing analyses of the QCD axion, for more general ALPs that can feature an enhanced photon coupling, stability is only ensured by a combination of the expansion and the plasma effects.

[1]  L. Lehner,et al.  Large-misalignment mechanism for the formation of compact axion structures: Signatures from the QCD axion to fuzzy dark matter , 2019, Physical Review D.

[2]  B. Nelson,et al.  Towards string theory expectations for photon couplings to axionlike particles , 2019, Physical Review D.

[3]  K. Nakayama Vector coherent oscillation dark matter , 2019, Journal of Cosmology and Astroparticle Physics.

[4]  P. Trivedi,et al.  Axion Condensate Dark Matter Constraints from Resonant Enhancement of Background Radiation , 2019, 1907.04849.

[5]  J. Jaeckel,et al.  Very light asymmetric dark matter , 2019, Journal of Cosmology and Astroparticle Physics.

[6]  G. Alvarez,et al.  Misalignment & Co.: (pseudo-)scalar and vector dark matter with curvature couplings , 2019, Journal of Cosmology and Astroparticle Physics.

[7]  A. Caputo,et al.  Erratum: Looking for axion dark matter in dwarf spheroidal galaxies [Phys. Rev. D 98 , 083024 (2018)] , 2019, Physical Review D.

[8]  K. Nakayama,et al.  Production of purely gravitational dark matter: the case of fermion and vector boson , 2019, Journal of High Energy Physics.

[9]  C. Gatti,et al.  Galactic axions search with a superconducting resonant cavity , 2019, Physical Review D.

[10]  J. Jaeckel,et al.  Foamy dark matter from monodromies , 2019, Journal of Cosmology and Astroparticle Physics.

[11]  Ariel Arza Photon enhancement in a homogeneous axion dark matter background , 2019, The European Physical Journal C.

[12]  V. Cardoso,et al.  Blasts of Light from Axions. , 2019, Physical review letters.

[13]  Tongyan Lin,et al.  Making dark matter out of light: Freeze-in from plasma effects , 2019, Physical Review D.

[14]  P. Sikivie,et al.  Production and Detection of an Axion Dark Matter Echo. , 2019, Physical review letters.

[15]  K. Bibber,et al.  HAYSTAC Status, Results, and Plans , 2019, 1901.01668.

[16]  A. Caputo,et al.  Detecting the stimulated decay of axions at radio frequencies , 2018, Journal of Cosmology and Astroparticle Physics.

[17]  C. Gatti,et al.  The Klash Proposal: Status and Perspectives , 2018, 1811.06754.

[18]  V. Cardoso,et al.  Electromagnetic emission from axionic clouds and the quenching of superradiant instabilities , 2018, 1811.04950.

[19]  C. S. Machado,et al.  Audible axions , 2018, Journal of High Energy Physics.

[20]  F. Takahashi,et al.  Relic abundance of dark photon dark matter , 2018, Physics Letters B.

[21]  J. Santiago,et al.  Vector dark matter production at the end of inflation , 2018, Journal of Cosmology and Astroparticle Physics.

[22]  J. A. Dror,et al.  Parametric resonance production of ultralight vector dark matter , 2018, Physical Review D.

[23]  A. Pierce,et al.  Dark photon dark matter produced by axion oscillations , 2018, Physical Review D.

[24]  Ariel Arza Photon enhancement in a homogeneous axion dark matter background , 2018, The European Physical Journal C.

[25]  R. Sawyer Axion, photon-pair mixing in models of axion dark matter , 2018, 1809.01183.

[26]  Ny,et al.  Observations of the missing baryons in the warm–hot intergalactic medium , 2018, Nature.

[27]  A. Caputo,et al.  Looking for axion dark matter in dwarf spheroidal galaxies , 2018, Physical Review D.

[28]  S. Sen Plasma effects on lasing of a uniform ultralight axion condensate , 2018, Physical Review D.

[29]  M. Hertzberg,et al.  Dark matter axion clump resonance of photons , 2018, Journal of Cosmology and Astroparticle Physics.

[30]  Alejandro Álvarez Melcón,et al.  Axion searches with microwave filters: the RADES project , 2018, 1803.01243.

[31]  Ivana Kovacic,et al.  Mathieu's Equation and Its Generalizations: Overview of Stability Charts and Their Features , 2018 .

[32]  I. Irastorza,et al.  New experimental approaches in the search for axion-like particles , 2018, Progress in Particle and Nuclear Physics.

[33]  B. Majorovits,et al.  MADMAX: A new road to axion dark matter detection , 2017, Journal of Physics: Conference Series.

[34]  F. Takahashi,et al.  Cosmological abundance of the QCD axion coupled to hidden photons , 2017, Physics Letters B.

[35]  J. Soda,et al.  Electromagnetic waves propagating in the string axiverse , 2017, 1710.09198.

[36]  T. Kephart,et al.  Stimulated Axion Decay in Superradiant Clouds around Primordial Black Holes. , 2017, Physical review letters.

[37]  T. Kephart,et al.  Black hole lasers powered by axion superradiant instabilities , 2017 .

[38]  W. Xue,et al.  Opening up the QCD axion window , 2017, Journal of High Energy Physics.

[39]  M. Tobar,et al.  The ORGAN Experiment: An axion haloscope above 15 GHz , 2017, 1706.00209.

[40]  E. Petrakou Haloscope searches for dark matter axions at the Center for Axion and Precision Physics Research , 2017, 1702.03664.

[41]  L. Witkowski,et al.  Monodromy Dark Matter , 2016, 1605.01367.

[42]  B. Safdi,et al.  Broadband and Resonant Approaches to Axion Dark Matter Detection. , 2016, Physical review letters.

[43]  R. Rattazzi,et al.  Large field excursions and approximate discrete symmetries from a clockwork axion , 2015, 1511.01827.

[44]  Kiwoon Choi,et al.  Realizing the relaxion from multiple axions and its UV completion with high scale supersymmetry , 2015, 1511.00132.

[45]  G. Perez,et al.  Is the relaxion an axion? , 2015, 1509.00047.

[46]  P. Graham,et al.  Vector Dark Matter from Inflationary Fluctuations , 2015, 1504.02102.

[47]  I. Tkachev Fast radio bursts and axion miniclusters , 2014, 1411.3900.

[48]  S. Lamoreaux,et al.  Future directions in the microwave cavity search for dark matter axions , 2014, 1405.3685.

[49]  Seokhoon Yun,et al.  Natural inflation with multiple sub-Planckian axions , 2014, 1404.6209.

[50]  S. Russenschuck,et al.  The International Axion Observatory IAXO. Letter of Intent to the CERN SPS committee , 2013 .

[51]  A. Ringwald,et al.  WISPy cold dark matter , 2012, 1201.5902.

[52]  D. Espriu,et al.  Photon propagation in a cold axion background with and without magnetic field , 2011, 1106.1662.

[53]  A. Ringwald,et al.  The Low-Energy Frontier of Particle Physics , 2010, 1002.0329.

[54]  A. Mirizzi,et al.  Microwave Background Constraints on Mixing of Photons with Hidden Photons , 2008, 0901.0014.

[55]  Javier Redondo,et al.  Massive hidden photons as lukewarm dark matter , 2008, 0811.0326.

[56]  J. Redondo Bounds on Very Weakly Interacting Sub-eV Particles (WISPs) from Cosmology and Astrophysics , 2008, 0810.3200.

[57]  Liam McAllister,et al.  Gravity Waves and Linear Inflation from Axion Monodromy , 2008, 0808.0706.

[58]  J. Berges,et al.  Parametric resonance in quantum field theory. , 2002, Physical review letters.

[59]  K. Ng,et al.  Photon production of axionic cold dark matter , 1999, hep-ph/9909282.

[60]  E. Kolb,et al.  Quantum fluctuations of axions , 1997, hep-ph/9709285.

[61]  A. Starobinsky,et al.  Towards the theory of reheating after inflation , 1997, hep-ph/9704452.

[62]  Salgado,et al.  Analytic and numerical study of preheating dynamics. , 1996, Physical review. D, Particles and fields.

[63]  G. Raffelt,et al.  The paradox of axions surviving primordial magnetic fiels , 1995, hep-ph/9510211.

[64]  Kephart,et al.  Stimulated radiation from axion cluster evolution. , 1995, Physical review. D, Particles and fields.

[65]  Brandenberger,et al.  Universe reheating after inflation. , 1995, Physical review. D, Particles and fields.

[66]  A. Starobinsky,et al.  Reheating after inflation. , 1994, Physical review letters.

[67]  Segel,et al.  Neutrino energy loss from the plasma process at all temperatures and densities. , 1993, Physical review. D, Particles and fields.

[68]  Brandenberger,et al.  Particle production during out-of-equilibrium phase transitions. , 1990, Physical review. D, Particles and fields.

[69]  I. Tkachev An axionic laser in the center of a galaxy , 1987 .

[70]  Kephart,et al.  Luminous axion clusters. , 1987, Physical review letters.

[71]  I. Tkachev Coherent scalar-field oscillations forming compact astrophysical objects , 1986 .

[72]  Michael Dine,et al.  The Not So Harmless Axion , 1983 .

[73]  Laurence F Abbott,et al.  A cosmological bound on the invisible axion , 1983 .

[74]  John Preskill,et al.  Cosmology of the invisible axion , 1983 .

[75]  Simon Foster,et al.  Optics , 1981, Arch. Formal Proofs.

[76]  N. Mclachlan Theory and Application of Mathieu Functions , 1965 .

[77]  G. Raffelt Stars as laboratories for fundamental physics , 1996 .