Rolled-up optical microcavities with subwavelength wall thicknesses for enhanced liquid sensing applications.

Microtubular optical microcavities from rolled-up ring resonators with subwavelength wall thicknesses have been fabricated by releasing prestressed SiO/SiO(2) bilayer nanomembranes from photoresist sacrificial layers. Whispering gallery modes are observed in the photoluminescence spectra from the rolled-up nanomembranes, and their spectral peak positions shift significantly when measurements are carried out in different surrounding liquids, thus indicating excellent sensing functionality of these optofluidic microcavities. Analytical calculations as well as finite-difference time-domain simulations are performed to investigate the light confinement in the optical microcavities numerically and to describe the experimental mode shifts very well. A maximum sensitivity of 425 nm/refractive index unit is achieved for the microtube ring resonators, which is caused by the pronounced propagation of the evanescent field in the surrounding media due to the subwavelength wall thickness design of the microcavity. Our optofluidic sensors show high potential for lab-on-a-chip applications, such as real-time bioanalytic systems.

[1]  D. Heitmann,et al.  Optical modes in semiconductor microtube ring resonators. , 2006, Physical review letters.

[2]  Tao Ling,et al.  Analysis of the sensing properties of silica microtube resonator sensors , 2009 .

[3]  Sabarni Palit,et al.  Chip scale integrated microresonator sensing systems , 2009, Journal of biophotonics.

[4]  O. Schmidt,et al.  Catalytic microtubular jet engines self-propelled by accumulated gas bubbles. , 2009, Small.

[5]  Yuze Sun,et al.  Single mode coupled optofluidic ring resonator dye lasers , 2009 .

[6]  J. Taylor Theory of Dielectric Optical Waveguides. 2nd Edition , 1992 .

[7]  Michal Lipson,et al.  High confinement micron-scale silicon nitride high Q ring resonator. , 2009, Optics express.

[8]  Xudong Fan,et al.  Liquid-core optical ring-resonator sensors. , 2006, Optics letters.

[9]  M. A. Putyato,et al.  Free-standing and overgrown InGaAs/GaAs nanotubes, nanohelices and their arrays , 2000 .

[10]  Oliver G. Schmidt,et al.  On-chip Si/SiOx microtube refractometer , 2008 .

[11]  J. Homola Surface plasmon resonance sensors for detection of chemical and biological species. , 2008, Chemical reviews.

[12]  A. Ksendzov,et al.  Integrated optics ring-resonator sensors for protein detection. , 2005, Optics letters.

[13]  Hongying Zhu,et al.  Phage-based label-free biomolecule detection in an opto-fluidic ring resonator. , 2008, Biosensors & bioelectronics.

[14]  Oliver G Schmidt,et al.  Fabrication, self-assembly, and properties of ultrathin AlN/GaN porous crystalline nanomembranes: tubes, spirals, and curved sheets. , 2009, ACS nano.

[15]  Degeneracy breaking of optical resonance modes in rolled-up spiral microtubes , 2007 .

[16]  O. Schmidt,et al.  Light emission and wave guiding of quantum dots in a tube , 2006 .

[17]  J. Heitmann,et al.  Si rings, Si clusters, and Si nanocrystals—different states of ultrathin SiOx layers , 2002 .

[18]  Christelle Monat,et al.  Integrated optofluidics: A new river of light , 2007 .

[19]  C. M. Schultz,et al.  Three-Dimensionally Confined Optical Modes in Quantum Well Microtube Ring Resonators , 2007, 0704.3971.

[20]  O. Schmidt,et al.  Nanotechnology: Thin solid films roll up into nanotubes , 2001, Nature.

[21]  K. Vahala Optical microcavities , 2003, Nature.

[22]  H. Nakashima,et al.  Observation of Si cluster formation in SiO2 films through annealing process using x-ray photoelectron spectroscopy and infrared techniques , 1998 .

[23]  Oliver G Schmidt,et al.  Rolled-up transparent microtubes as two-dimensionally confined culture scaffolds of individual yeast cells. , 2009, Lab on a chip.

[24]  D. Heitmann,et al.  Optical microcavities formed by semiconductor microtubes using a bottlelike geometry. , 2008, Physical review letters.

[25]  Oliver G Schmidt,et al.  Optical resonance tuning and polarization of thin-walled tubular microcavities. , 2009, Optics letters.

[26]  J. Greve,et al.  Fast, ultrasensitive virus detection using a Young interferometer sensor. , 2007, Nano letters.

[27]  Oliver G. Schmidt,et al.  Versatile Approach for Integrative and Functionalized Tubes by Strain Engineering of Nanomembranes on Polymers , 2008 .

[28]  R. Windeler,et al.  Optical liquid ring resonator sensor. , 2007, Optics express.

[29]  Alessandro Salandrino,et al.  Far-field subdiffraction optical microscopy using metamaterial crystals: Theory and simulations , 2006 .

[30]  Rolling up SiGe on insulator , 2007 .

[31]  Hongying Zhu,et al.  Integrated refractive index optical ring resonator detector for capillary electrophoresis. , 2007, Analytical chemistry.

[32]  Sungmin Son,et al.  Suspended microchannel resonators for ultralow volume universal detection. , 2008, Analytical chemistry.

[33]  Xudong Fan,et al.  Integrated multiplexed biosensors based on liquid core optical ring resonators and antiresonant reflecting optical waveguides , 2006 .

[34]  S. Arnold,et al.  Shift of whispering-gallery modes in microspheres by protein adsorption. , 2003, Optics letters.

[35]  M. Lipson,et al.  Cavity-enhanced on-chip absorption spectroscopy using microring resonators. , 2008, Optics express.

[36]  SiOx∕Si radial superlattices and microtube optical ring resonators , 2006, cond-mat/0611261.

[37]  K. Vahala,et al.  Ultralow-threshold Raman laser using a spherical dielectric microcavity , 2002, Nature.

[38]  A. Meldrum,et al.  Silicon nanocrystal luminescence coupled to whispering gallery modes in optical fibers , 2009 .

[39]  O. Schmidt,et al.  Optical properties of rolled-up tubular microcavities from shaped nanomembranes , 2009 .

[40]  T. J. Kippenberg,et al.  Ultra-high-Q toroid microcavity on a chip , 2003, Nature.

[41]  Roel Baets,et al.  Tuning of silicon-on-insulator ring resonators with liquid crystal cladding using the longitudinal field component. , 2009, Optics letters.

[42]  Hongying Zhu,et al.  Analysis of biomolecule detection with optofluidic ring resonator sensors. , 2007, Optics express.

[43]  Ian M. White,et al.  An opto-fluidic ring resonator biosensor for the detection of organophosphorus pesticides , 2008 .

[44]  Oliver G. Schmidt,et al.  Process integration of microtubes for fluidic applications , 2006 .