A continuum framework for mechanics of fractal materials II: elastic stress fields ahead of cracks in a fractal medium

This paper is devoted to the crack mechanics in heterogeneous materials with fractal (micro-)structures. Specifically, stress concentrations ahead of straight notches and self-affine cracks in fractal media are studied within a fractal continuum framework. A model of fractal continuum with fractal boundaries accounting for the metric, topological, and connectivity properties of the material microstructure and crack is employed for homogenization of crack problems in fractal media. It is found that the fractal nature of material heterogeneity can either delay or assist the crack initiation and propagation, depending on the interplay between metric and topological properties of the fractal domain.

[1]  A. Yavari,et al.  Estimating Terminal Velocity of Rough Cracks in the Framework of Discrete Fractal Fracture Mechanics , 2010, 1004.4648.

[2]  A. Balankin Physics of fracture and mechanics of self-affine cracks , 1997 .

[3]  T. Nakayama,et al.  Dynamical properties of fractal networks: Scaling, numerical simulations, and physical realizations , 1994 .

[4]  A. Balankin,et al.  Stress concentration and size effect in fracture of notched heterogeneous material. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[5]  Alex Hansen,et al.  Origin of the universal roughness exponent of brittle fracture surfaces:stress-weighted percolation in the damage zone. , 2003, Physical review letters.

[6]  Alex Hansen,et al.  Roughness of interfacial crack fronts: stress-weighted percolation in the damage zone. , 2003, Physical review letters.

[7]  A. Yavari,et al.  Discrete fractal fracture mechanics , 2008 .

[8]  A. Yavari,et al.  Influence of material ductility and crack surface roughness on fracture instability , 2011 .

[9]  Véronique Lazarus,et al.  Perturbation approaches of a planar crack in linear elastic fracture mechanics: A review , 2011 .

[10]  Elisabeth Bouchaud,et al.  Scaling properties of cracks , 1997 .

[11]  Bouchaud,et al.  Scaling of crack surfaces and implications for fracture mechanics , 2000, Physical review letters.

[12]  Fractal Analysis and Fractography: What Can we Learn that’s New? , 2009 .

[13]  Interpolating and Orthogonal Polynomials on Fractals , 1989 .

[14]  A. Balankin,et al.  Probabilistic mechanics of self–affine cracks in paper sheets , 1999, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[15]  O. K. Panagouli,et al.  Mechanics on fractal bodies. Data compression using fractals , 1997 .

[16]  Damien Vandembroucq,et al.  Conformal Mapping on Rough Boundaries I: Applications to harmonic problems , 1997 .

[17]  Zdeněk P. Bažant,et al.  Is the cause of size effect on structural strength fractal or energetic-statistical? , 2004 .

[18]  H. Wallin The trace to the boundary of Sobolev spaces on a snowflake , 1991 .

[19]  P. Donato,et al.  An introduction to homogenization , 2000 .

[20]  Alberto Carpinteri,et al.  Embrittlement and decrease of apparent strength in large-sized concrete structures , 2002 .

[21]  M. Sahimi Flow phenomena in rocks : from continuum models to fractals, percolation, cellular automata, and simulated annealing , 1993 .

[22]  O. K. Panagouli,et al.  On the fractal nature of problems in mechanics , 1997 .

[23]  Victor E. Saouma,et al.  On Fractals and Size Effects , 2006 .

[24]  Alexander S. Balankin,et al.  A continuum framework for mechanics of fractal materials I: from fractional space to continuum with fractal metric , 2015 .

[25]  Alexander S. Balankin,et al.  Fractal fracture mechanics—A review , 1995 .

[26]  A. Yavari,et al.  A correspondence principle for fractal and classical cracks , 2005 .

[27]  T. Anderson,et al.  Fracture mechanics - Fundamentals and applications , 2017 .