First-principle investigation on electronic structures and magnetic properties of EuNbO3 phases

Recently, structure phase transitions were experimentally found in europium niobate (EuNbO3). Here, we present a density-functional theory (DFT) investigation of structural, electronic and magnetic properties of the experimentally observed three phases of EuNbO3: orthorhombic (space group Imma), tetragonal (I4/mcm) and cubic (Pmm). The calculated structural parameters and magnetic properties of the ground state are in agreement with available experimental results. The ground states of the orthorhombic and cubic phases are ferromagnetic metals and the tetragonal phase is predicted as an antiferromagnetic metal. Besides, the Eu atom has the magnetic moment of 6.9 μB/atom in the EuNbO3 phases. The present study provides a theoretical approach to understand EuNbO3 in its different phases.

[1]  P. P. Khirade,et al.  Room temperature ferromagnetism and photoluminescence of multifunctional Fe doped BaZrO3 nanoceramics , 2017 .

[2]  Xiaoshan Wu,et al.  Gd-doping-induced insulator-metal transition in SrTiO3 , 2017 .

[3]  Fengren Fan,et al.  Unusual high-spin Fe 5 + − Ni 3 + state and strong ferromagnetism in the mixed perovskite SrFe 0.5 Ni 0.5 O 3 , 2016 .

[4]  M. Beasley,et al.  Electron Doping of the Parent Cuprate La_{2}CuO_{4} without Cation Substitution. , 2016, Physical review letters.

[5]  Ling Fu,et al.  Suppression of Superfluid Density and the Pseudogap State in the Cuprates by Impurities. , 2016, Physical review letters.

[6]  Katsuhisa Tanaka,et al.  Structural phase transitions in EuNbO3 perovskite , 2016 .

[7]  M. Kitamura,et al.  Isotropic Kink and Quasiparticle Excitations in the Three-Dimensional Perovskite Manganite La_{0.6}Sr_{0.4}MnO_{3}. , 2015, Physical review letters.

[8]  T. Cain,et al.  Metal–insulator transitions in epitaxial Gd1 − xSrxTiO3 thin films grown using hybrid molecular beam epitaxy , 2015 .

[9]  Jiaqiang Yan,et al.  Structural and magnetic phase transitions in EuTi1-xNbxO3 , 2015, 1505.05528.

[10]  Yurong Yang,et al.  Understanding and revisiting properties of EuTiO3 bulk material and films from first principles. , 2012, Physical review letters.

[11]  C. Mazzoli,et al.  Role of intrinsic disorder in the structural phase transition of magnetoelectric EuTiO3 , 2011, 1111.0541.

[12]  M. Beasley,et al.  Structure, physical properties, and applications of SrRuO3 thin films , 2012 .

[13]  Katsuhisa Tanaka,et al.  Antiferromagnetic superexchange via 3d states of titanium in EuTiO3 as seen from hybrid Hartree-Fock density functional calculations , 2011 .

[14]  J. Mannhart,et al.  Coexistence of magnetic order and two-dimensional superconductivity at LaAlO3/SrTiO3 interfaces , 2011, 1105.0235.

[15]  M. Rozenberg,et al.  Two-dimensional electron gas with universal subbands at the surface of SrTiO3 , 2010, Nature.

[16]  Y. Tseng,et al.  Pressure-induced electronic mixing and enhancement of ferromagnetic ordering in EuX (X=Te, Se, S, O) magnetic semiconductors. , 2008, Physical review letters.

[17]  R. Pentcheva,et al.  Electronic structure and magnetism of EuTiO3: a first-principles study , 2007, Journal of physics. Condensed matter : an Institute of Physics journal.

[18]  K. Knight,et al.  High-resolution neutron powder diffraction study on the phase transitions in BaPbO3 , 2007 .

[19]  W. Pickett,et al.  Exchange Coupling in Eu Monochalcogenides from First Principles , 2004, cond-mat/0406229.

[20]  K. Knight,et al.  Temperature-induced phase transitions in BaTbO3 , 2004 .

[21]  M. Hervieu,et al.  Structure, Magnetism, and Transport Properties of Pr1-xSrxMnO3 (x = 0.45−0.75) up to 1200 K , 2004 .

[22]  S. Khasanov,et al.  On the superconducting and magnetic properties of HoNbO3−δ and EuNbO3−δ complex oxides , 2001 .

[23]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[24]  B. Kennedy,et al.  High-temperature phases of SrRuO 3 , 1998 .

[25]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[26]  J. Köhler,et al.  Synthesis and structural, magnetic and electrical characterisation of the reduced oxoniobates BaNb8O14, EuNb8O14, Eu2Nb5O9 and EuxNbO3 (x=0.7, 1.0) , 1995 .

[27]  G. Adachi,et al.  Electrical Properties of Divalent Europium Niobium Bronzes Eu x NbO3 , 1981 .

[28]  A. M. Glazer,et al.  The classification of tilted octahedra in perovskites , 1972 .

[29]  M. Shafer Preparation and Crystal Chemistry of Divalent Europium Compounds , 1965 .

[30]  Philip W. Anderson,et al.  New Approach to the Theory of Superexchange Interactions , 1959 .

[31]  E. Wollan,et al.  Neutron Diffraction Study of the Magnetic Properties of the Series of Perovskite-Type Compounds [ ( 1 − x ) La , x Ca ] Mn O 3 , 1955 .