Existence and Stability of Standing Pulses in Neural Networks: II. Stability

We analyze the stability of standing pulse solutions of a neural network integro-differential equation. The network consists of a coarse-grained layer of neurons synaptically connected by lateral inhibition with a nonsaturating nonlinear gain function. When two standing single-pulse solutions coexist, the small pulse is unstable, and the large pulse is stable. The large single pulse is bistable with the "all-off" state. This bistable localized activity may have strong implications for the mechanism underlying working memory. We show that dimple pulses have similar stability properties to large pulses but double pulses are unstable.

[1]  H. Sompolinsky,et al.  Theory of orientation tuning in visual cortex. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[2]  W. Rudin Principles of mathematical analysis , 1964 .

[3]  Jonathan E. Rubin,et al.  A NONLOCAL EIGENVALUE PROBLEM FOR THE STABILITY OF A TRAVELING WAVE IN A NEURONAL MEDIUM , 2004 .

[4]  Xiao-Jing Wang,et al.  A Model of Visuospatial Working Memory in Prefrontal Cortex: Recurrent Network and Cellular Bistability , 1998, Journal of Computational Neuroscience.

[5]  J. Cowan,et al.  A mathematical theory of the functional dynamics of cortical and thalamic nervous tissue , 1973, Kybernetik.

[6]  Prem K. Kythe,et al.  Integral Equation Methods , 1998 .

[7]  Carson C. Chow,et al.  Localized Bumps of Activity Sustained by Inhibition in a Two-Layer Thalamic Network , 2004, Journal of Computational Neuroscience.

[8]  Eva Part-Enander,et al.  The Matlab Handbook , 1996 .

[9]  S. Orszag,et al.  Advanced mathematical methods for scientists and engineers I: asymptotic methods and perturbation theory. , 1999 .

[10]  Carlo R. Laing,et al.  PDE Methods for Nonlocal Models , 2003, SIAM J. Appl. Dyn. Syst..

[11]  L. Delves,et al.  Computational methods for integral equations: Frontmatter , 1985 .

[12]  Boris S. Gutkin,et al.  Turning On and Off with Excitation: The Role of Spike-Timing Asynchrony and Synchrony in Sustained Neural Activity , 2001, Journal of Computational Neuroscience.

[13]  Matiur Rahman,et al.  Complex Variables and Transform Calculus , 1997 .

[14]  H S Seung,et al.  How the brain keeps the eyes still. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[15]  B W Connors,et al.  Intrinsic neuronal physiology and the functions, dysfunctions and development of neocortex. , 1994, Progress in brain research.

[16]  Todd Kapitula,et al.  The Evans function for nonlocal equations , 2004 .

[17]  Xiao-Jing Wang Synaptic reverberation underlying mnemonic persistent activity , 2001, Trends in Neurosciences.

[18]  S. Velizarov Introduction to fourier analysis , 1996 .

[19]  H. Spinnler The prefrontal cortex, Anatomy, physiology, and neuropsychology of the frontal lobe, J.M. Fuster. Raven Press, New York (1980), IX-222 pages , 1981 .

[20]  Yixin Guo,et al.  Existence and stability of standing pulses in neural networks , 2003 .

[21]  B. Richmond,et al.  Intrinsic dynamics in neuronal networks. II. experiment. , 2000, Journal of neurophysiology.

[22]  Masayasu Mimura,et al.  Layer oscillations in reaction-diffusion systems , 1989 .

[23]  Jeffrey R. Chasnov Introduction to Differential Equations , 1945, Nature.

[24]  Tosio Kato Perturbation theory for linear operators , 1966 .

[25]  Michael A. Arbib,et al.  The handbook of brain theory and neural networks , 1995, A Bradford book.

[26]  J. Davenport Editor , 1960 .

[27]  E. Kreyszig Introductory Functional Analysis With Applications , 1978 .

[28]  P. Goldman-Rakic Cellular basis of working memory , 1995, Neuron.

[29]  I. N. Sneddon,et al.  Boundary value problems , 2007 .

[30]  M. Goldberg,et al.  Oculocentric spatial representation in parietal cortex. , 1995, Cerebral cortex.

[31]  Paul C Bressloff,et al.  On the formation of persistent states in neuronal network models of feature selectivity. , 2003, Journal of integrative neuroscience.

[32]  P. Goldman-Rakic,et al.  Coding Specificity in Cortical Microcircuits: A Multiple-Electrode Analysis of Primate Prefrontal Cortex , 2001, The Journal of Neuroscience.

[33]  H. Eom Green’s Functions: Applications , 2004 .

[34]  G. Lord,et al.  Waves and bumps in neuronal networks with axo-dendritic synaptic interactions , 2003 .

[35]  S Grossberg,et al.  Some developmental and attentional biases in the contrast enhancement and short term memory of recurrent neural networks. , 1975, Journal of theoretical biology.

[36]  Maria V. Sanchez-Vives,et al.  Cellular and network mechanisms of rhythmic recurrent activity in neocortex , 2000, Nature Neuroscience.

[37]  N. Rashevsky,et al.  Mathematical biology , 1961, Connecticut medicine.

[38]  Boris S. Gutkin,et al.  Multiple Bumps in a Neuronal Model of Working Memory , 2002, SIAM J. Appl. Math..

[39]  J. A. Kuznecov Elements of applied bifurcation theory , 1998 .

[40]  Charalambos D. Aliprantis,et al.  Principles of Real Analysis , 1981 .

[41]  S. Amari Dynamics of pattern formation in lateral-inhibition type neural fields , 1977, Biological Cybernetics.

[42]  S. Grossberg,et al.  Pattern formation, contrast control, and oscillations in the short term memory of shunting on-center off-surround networks , 1975, Biological Cybernetics.

[43]  P. Goldman-Rakic,et al.  Correlated discharges among putative pyramidal neurons and interneurons in the primate prefrontal cortex. , 2002, Journal of neurophysiology.

[44]  R. Desimone,et al.  Neural Mechanisms of Visual Working Memory in Prefrontal Cortex of the Macaque , 1996, The Journal of Neuroscience.

[45]  Anders Vretblad,et al.  Fourier Analysis and Its Applications , 2005 .

[46]  J. Fuster The Prefrontal Cortex , 1997 .

[47]  L. Abbott,et al.  A model of multiplicative neural responses in parietal cortex. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[48]  J. Deuchars,et al.  Temporal and spatial properties of local circuits in neocortex , 1994, Trends in Neurosciences.

[49]  V. G. Yakhno,et al.  Generation of Collective-Activity Structures in a Homogeneous Neuron-Like Medium i: Bifurcation Analysis of Static Structures , 1996 .

[50]  X. Wang,et al.  Synaptic Basis of Cortical Persistent Activity: the Importance of NMDA Receptors to Working Memory , 1999, The Journal of Neuroscience.

[51]  Frank G. Garvan,et al.  The MAPLE Book , 2001 .

[52]  G. E. Alexander,et al.  Neuron Activity Related to Short-Term Memory , 1971, Science.

[53]  C. Laing,et al.  Two-bump solutions of Amari-type models of neuronal pattern formation , 2003 .

[54]  Bard Ermentrout,et al.  Simulating, analyzing, and animating dynamical systems - a guide to XPPAUT for researchers and students , 2002, Software, environments, tools.

[55]  John Evans,et al.  Nerve Axon Equations: II Stability at Rest , 1972 .

[56]  P. Goldman-Rakic,et al.  Mnemonic coding of visual space in the monkey's dorsolateral prefrontal cortex. , 1989, Journal of neurophysiology.

[57]  S. Wiggins Introduction to Applied Nonlinear Dynamical Systems and Chaos , 1989 .

[58]  Bard Ermentrout,et al.  Reduction of Conductance-Based Models with Slow Synapses to Neural Nets , 1994, Neural Computation.

[59]  H. Sompolinsky,et al.  13 Modeling Feature Selectivity in Local Cortical Circuits , 2022 .

[60]  Stephen Wolfram,et al.  The Mathematica Book , 1996 .

[61]  B. Ermentrout Neural networks as spatio-temporal pattern-forming systems , 1998 .

[62]  V. G. Yakhno,et al.  GENERATION OF COLLECTIVE-ACTIVITY STRUCTURES IN A HOMOGENEOUS NEURON-LIKE MEDIUM II: DYNAMICS OF PROPAGATING AND PULSATING STRUCTURES , 1996 .

[63]  Stephen Coombes,et al.  Evans Functions for Integral Neural Field Equations with Heaviside Firing Rate Function , 2004, SIAM J. Appl. Dyn. Syst..

[64]  I. B. Russak,et al.  Manifolds , 2019, Spacetime and Geometry.

[65]  J Deuchars,et al.  Relationships between morphology and physiology of pyramid‐pyramid single axon connections in rat neocortex in vitro. , 1994, The Journal of physiology.

[66]  J. Cowan,et al.  Excitatory and inhibitory interactions in localized populations of model neurons. , 1972, Biophysical journal.

[67]  S. W. Kuffler,et al.  From Neuron to Brain: A Cellular and Molecular Approach to the Function of the Nervous System , 1992 .

[68]  K. Atkinson The Numerical Solution of Integral Equations of the Second Kind , 1997 .

[69]  Jonathan E. Rubin,et al.  Sustained Spatial Patterns of Activity in Neuronal Populations without Recurrent Excitation , 2004, SIAM J. Appl. Math..

[70]  Linghai Zhang,et al.  On stability of traveling wave solutions in synaptically coupled neuronal networks , 2003, Differential and Integral Equations.

[71]  Bard Ermentrout,et al.  Spatially Structured Activity in Synaptically Coupled Neuronal Networks: I. Traveling Fronts and Pulses , 2001, SIAM J. Appl. Math..

[72]  B. Kendall Nonlinear Dynamics and Chaos , 2001 .

[73]  John Evans Nerve Axon Equations: III Stability of the Nerve Impulse , 1972 .

[74]  H. Sompolinsky,et al.  Mexican hats and pinwheels in visual cortex , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[75]  P. Goldman-Rakic,et al.  Division of labor among distinct subtypes of inhibitory neurons in a cortical microcircuit of working memory. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[76]  Carson C. Chow,et al.  Stationary Bumps in Networks of Spiking Neurons , 2001, Neural Computation.

[77]  S. Amari,et al.  Existence and stability of local excitations in homogeneous neural fields , 1979, Journal of mathematical biology.

[78]  Bard Ermentrout,et al.  Spatially Structured Activity in Synaptically Coupled Neuronal Networks: II. Lateral Inhibition and Standing Pulses , 2001, SIAM J. Appl. Math..

[79]  P. Goldman-Rakic,et al.  Temporally irregular mnemonic persistent activity in prefrontal neurons of monkeys during a delayed response task. , 2003, Journal of neurophysiology.

[80]  L. Peletier,et al.  Spatial Patterns: Higher Order Models in Physics and Mechanics , 2001 .

[81]  A. Balakrishnan Applied Functional Analysis , 1976 .

[82]  B. Richmond,et al.  Intrinsic dynamics in neuronal networks. I. Theory. , 2000, Journal of neurophysiology.

[83]  Nonlinear functional analysis and its applications, part I: Fixed-point theorems , 1991 .

[84]  Alan R. Champneys,et al.  On solitary waves of a piecewise linear suspended beam model , 1997 .