Mittag-Leffler convergent backstepping observers for coupled semilinear subdiffusion systems with spatially varying parameters
暂无分享,去创建一个
Yangquan Chen | Thomas Meurer | Fudong Ge | Y. Chen | Fudong Ge | T. Meurer
[1] Thomas Meurer,et al. Flatness-based trajectory planning for diffusion-reaction systems in a parallelepipedon - A spectral approach , 2011, Autom..
[2] Francesco Mainardi,et al. The Classical Mittag-Leffler Function , 2020, Springer Monographs in Mathematics.
[3] Andreas Kugi,et al. Trajectory Planning for Boundary Controlled Parabolic PDEs With Varying Parameters on Higher-Dimensional Spatial Domains , 2009, IEEE Transactions on Automatic Control.
[4] S. Wearne,et al. Fractional Reaction-Diffusion , 2000 .
[5] Changpin Li,et al. A survey on the stability of fractional differential equations , 2011 .
[6] Driss Boutat,et al. Backstepping observer-based output feedback control for a class of coupled parabolic PDEs with different diffusions , 2016, Syst. Control. Lett..
[7] R. Rees Fullmer,et al. Boundary Stabilization and Disturbance Rejection for Time Fractional Order Diffusion–Wave Equations , 2004 .
[8] Yury Orlov,et al. Boundary control of coupled reaction-diffusion processes with constant parameters , 2015, Autom..
[9] Thomas Meurer,et al. On the Extended Luenberger-Type Observer for Semilinear Distributed-Parameter Systems , 2013, IEEE Transactions on Automatic Control.
[10] John B. Shoven,et al. I , Edinburgh Medical and Surgical Journal.
[11] Vladimir V. Uchaikin,et al. Fractional theory for transport in disordered semiconductors , 2008 .
[12] YangQuan Chen,et al. Extended Luenberger-type observer for a class of semilinear time fractional diffusion systems , 2017 .
[13] I. Podlubny. Fractional-Order Systems and -Controllers , 1999 .
[14] YangQuan Chen,et al. Fractional-order Systems and Controls , 2010 .
[15] M. Krstić,et al. Boundary Control of PDEs , 2008 .
[16] Miroslav Krstic,et al. Closed-form boundary State feedbacks for a class of 1-D partial integro-differential equations , 2004, IEEE Transactions on Automatic Control.
[17] Andreas Kugi,et al. Tracking control for boundary controlled parabolic PDEs with varying parameters: Combining backstepping and differential flatness , 2009, Autom..
[18] H. Srivastava,et al. Theory and Applications of Fractional Differential Equations , 2006 .
[19] Joachim Deutscher,et al. Backstepping Control of Coupled Linear Parabolic PIDEs With Spatially Varying Coefficients , 2017, IEEE Transactions on Automatic Control.
[20] Bao-Zhu Guo,et al. Boundary Feedback Stabilization for an Unstable Time Fractional Reaction Diffusion Equation , 2018, SIAM J. Control. Optim..
[21] Igor Podlubny,et al. Fractional-order systems and PI/sup /spl lambda//D/sup /spl mu//-controllers , 1999 .
[22] YangQuan Chen,et al. Regional Analysis of Time-Fractional Diffusion Processes , 2018 .
[23] Manuel A. Duarte-Mermoud,et al. Lyapunov functions for fractional order systems , 2014, Commun. Nonlinear Sci. Numer. Simul..
[24] YangQuan Chen,et al. Boundary feedback stabilisation for the time fractional-order anomalous diffusion system , 2016 .
[25] Shuxia Tang,et al. State and output feedback boundary control for a coupled PDE-ODE system , 2011, Syst. Control. Lett..
[26] R. Gorenflo,et al. Mittag-Leffler Functions, Related Topics and Applications , 2014, Springer Monographs in Mathematics.
[27] Miroslav Krstic,et al. Boundary Control of Coupled Reaction-Advection-Diffusion Systems With Spatially-Varying Coefficients , 2016, IEEE Transactions on Automatic Control.
[28] Igor Podlubny,et al. Mittag-Leffler stability of fractional order nonlinear dynamic systems , 2009, Autom..
[29] Mathieu Moze,et al. LMI stability conditions for fractional order systems , 2010, Comput. Math. Appl..