Mittag-Leffler convergent backstepping observers for coupled semilinear subdiffusion systems with spatially varying parameters

Abstract The purpose of this paper is to investigate the observer-based boundary output feedback control for subdiffusion processes governed by coupled semilinear time fractional diffusion systems (TFDSs) with spatially varying parameters. For this, backstepping technique is used to Mittag-Leffler stabilize the coupled semilinear observer error dynamic systems. We then design an observer-based output feedback controller at the right boundary to realize the Mittag-Leffler stability of the closed-loop systems at hand. A numerical example is finally included to test our methods.

[1]  Thomas Meurer,et al.  Flatness-based trajectory planning for diffusion-reaction systems in a parallelepipedon - A spectral approach , 2011, Autom..

[2]  Francesco Mainardi,et al.  The Classical Mittag-Leffler Function , 2020, Springer Monographs in Mathematics.

[3]  Andreas Kugi,et al.  Trajectory Planning for Boundary Controlled Parabolic PDEs With Varying Parameters on Higher-Dimensional Spatial Domains , 2009, IEEE Transactions on Automatic Control.

[4]  S. Wearne,et al.  Fractional Reaction-Diffusion , 2000 .

[5]  Changpin Li,et al.  A survey on the stability of fractional differential equations , 2011 .

[6]  Driss Boutat,et al.  Backstepping observer-based output feedback control for a class of coupled parabolic PDEs with different diffusions , 2016, Syst. Control. Lett..

[7]  R. Rees Fullmer,et al.  Boundary Stabilization and Disturbance Rejection for Time Fractional Order Diffusion–Wave Equations , 2004 .

[8]  Yury Orlov,et al.  Boundary control of coupled reaction-diffusion processes with constant parameters , 2015, Autom..

[9]  Thomas Meurer,et al.  On the Extended Luenberger-Type Observer for Semilinear Distributed-Parameter Systems , 2013, IEEE Transactions on Automatic Control.

[10]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[11]  Vladimir V. Uchaikin,et al.  Fractional theory for transport in disordered semiconductors , 2008 .

[12]  YangQuan Chen,et al.  Extended Luenberger-type observer for a class of semilinear time fractional diffusion systems , 2017 .

[13]  I. Podlubny Fractional-Order Systems and -Controllers , 1999 .

[14]  YangQuan Chen,et al.  Fractional-order Systems and Controls , 2010 .

[15]  M. Krstić,et al.  Boundary Control of PDEs , 2008 .

[16]  Miroslav Krstic,et al.  Closed-form boundary State feedbacks for a class of 1-D partial integro-differential equations , 2004, IEEE Transactions on Automatic Control.

[17]  Andreas Kugi,et al.  Tracking control for boundary controlled parabolic PDEs with varying parameters: Combining backstepping and differential flatness , 2009, Autom..

[18]  H. Srivastava,et al.  Theory and Applications of Fractional Differential Equations , 2006 .

[19]  Joachim Deutscher,et al.  Backstepping Control of Coupled Linear Parabolic PIDEs With Spatially Varying Coefficients , 2017, IEEE Transactions on Automatic Control.

[20]  Bao-Zhu Guo,et al.  Boundary Feedback Stabilization for an Unstable Time Fractional Reaction Diffusion Equation , 2018, SIAM J. Control. Optim..

[21]  Igor Podlubny,et al.  Fractional-order systems and PI/sup /spl lambda//D/sup /spl mu//-controllers , 1999 .

[22]  YangQuan Chen,et al.  Regional Analysis of Time-Fractional Diffusion Processes , 2018 .

[23]  Manuel A. Duarte-Mermoud,et al.  Lyapunov functions for fractional order systems , 2014, Commun. Nonlinear Sci. Numer. Simul..

[24]  YangQuan Chen,et al.  Boundary feedback stabilisation for the time fractional-order anomalous diffusion system , 2016 .

[25]  Shuxia Tang,et al.  State and output feedback boundary control for a coupled PDE-ODE system , 2011, Syst. Control. Lett..

[26]  R. Gorenflo,et al.  Mittag-Leffler Functions, Related Topics and Applications , 2014, Springer Monographs in Mathematics.

[27]  Miroslav Krstic,et al.  Boundary Control of Coupled Reaction-Advection-Diffusion Systems With Spatially-Varying Coefficients , 2016, IEEE Transactions on Automatic Control.

[28]  Igor Podlubny,et al.  Mittag-Leffler stability of fractional order nonlinear dynamic systems , 2009, Autom..

[29]  Mathieu Moze,et al.  LMI stability conditions for fractional order systems , 2010, Comput. Math. Appl..