Quantitative autoradiography of dopamine D2 sites in rat caudate-putamen: Localization to intrinsic neurons and not to neocortical afferents

[1]  G. Scatchard,et al.  THE ATTRACTIONS OF PROTEINS FOR SMALL MOLECULES AND IONS , 1949 .

[2]  A. Carlsson,et al.  On the presence of 3-hydroxytyramine in brain. , 1958, Science.

[3]  W M COWAN,et al.  A bilateral cortico-striate projection , 1965, Journal of neurology, neurosurgery, and psychiatry.

[4]  A. Phillips,et al.  Reversal by L-Dopa of Impaired Learning Due to Destruction of the Dopaminergic Nigro-Neostriatal Projection , 1974, Science.

[5]  M. M. Bradford A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. , 1976, Analytical biochemistry.

[6]  S. Wise,et al.  Cells of origin and terminal distribution of descending projections of the rat somatic sensory cortex , 1977, The Journal of comparative neurology.

[7]  A. Herbet,et al.  Regional differences in the sensitivity of cholinergic neurons to dopaminergic drugs and quipazine in the rat striatum , 1977, Brain Research.

[8]  M Goldstein,et al.  Immunohistochemical studies on the localization and distribution of monoamine neuron systems in the rat brain II. Tyrosine hydroxylase in the telencephalon. , 1977, Medical biology.

[9]  S. Snyder,et al.  Dopamine receptors localised on cerebral cortical afferents to rat corpus striatum , 1978, Nature.

[10]  P. Spano,et al.  Dopamine receptors: pharmacological and anatomical evidences indicate that two distinct dopamine receptor populations are present in rat striatum. , 1978, Life sciences.

[11]  M. Kuhar,et al.  Dopamine receptor binding in vivo: the feasibility of autoradiographic studies. , 1978, Life sciences.

[12]  J. Fallon,et al.  Catecholamine innervation of the basal forebrain IV. Topography of the dopamine projection to the basal forebrain and neostriatum , 1978, The Journal of comparative neurology.

[13]  P. Emson,et al.  Receptor-linked cyclic amp systems in rat neostriatum: Differential localization revealed by kainic acid injection , 1978, Brain Research.

[14]  I. Creese,et al.  Dopamine receptor binding: specificity, localization and regulation by ions and guanyl nucleotides. , 1978, Life sciences.

[15]  J. Coyle,et al.  In situ injection of kainic acid: A new method for selectively lesioning neuronal cell bodies while sparing axons of passage , 1978, The Journal of comparative neurology.

[16]  V. Höllt,et al.  Demonstration of neuroleptic receptor sites in mouse brain by autoradiography , 1978, Brain Research.

[17]  I. Divac,et al.  Behavioral and anatomical consequences of small intrastriatal injections of kainic acid in the rat , 1978, Brain Research.

[18]  M. Kuhar,et al.  Autoradiographic localization of neuroleptic and dopamine receptors in the caudate-putamen and substantia nigra: Effects of lesions , 1979 .

[19]  D. Howlett,et al.  Anomalous properties of [3H]spiperone binding sites in various areas of the rat limbic system. , 1979, Molecular pharmacology.

[20]  J. Marshall Somatosensory inattention after dopamine-depleting intracerebral 6-OHDA injections: Spontaneous recovery and pharmacological control , 1979, Brain Research.

[21]  M. Karobath,et al.  Is there a selectivity of neuronal degeneration induced by intrastriatal injection of kainic acid? , 1979, Brain Research.

[22]  J. Kebabian,et al.  Multiple receptors for dopamine , 1979, Nature.

[23]  P. Seeman Brain dopamine receptors. , 1980, Pharmacological reviews.

[24]  T. Hökfelt,et al.  Effects of Chronic Striatal Kainate Lesions on Some Dopaminergic Parameters and Enkephalin Immunoreactive Neurons in the Basal Ganglia , 1980, Journal of neurochemistry.

[25]  H. Simon,et al.  Dopaminergic A10 neurones are involved in cognitive functions , 1980, Nature.

[26]  J. Veening,et al.  The topical organization of the afferents to the caudatoputamen of the rat. A horseradish peroxidase study , 1980, Neuroscience.

[27]  J. Simon,et al.  Regional distribution of cholinergic parameters within the rat striatum , 1981, Brain Research.

[28]  J. Palacios,et al.  [3H]Spiperone binding sites in brain: autoradiographic localization of multiple receptors , 1981, Brain Research.

[29]  P. Jenner,et al.  Kainic acid lesions of striatum and decortication reduce specific [3H]sulpiride binding in rats, so D‐2 receptors exist post‐synaptically on corticostriate afferents and striatal neurons , 1981, The Journal of pharmacy and pharmacology.

[30]  K. Kultas‐Ilinsky,et al.  Synaptic organization of motor corticostriatal projections in the rat , 1981, Experimental Neurology.

[31]  C. Marsden,et al.  Substituted benzamide drugs as selective neuroleptic agents. , 1981, Neuropharmacology.

[32]  I. Creese,et al.  Kainate lesion dissociates striatal dopamine receptor radioligand binding sites. , 1981, European journal of pharmacology.

[33]  J. Waddington,et al.  Kainic acid lesions dissociate [3H] spiperone and [3H]cis-flupenthixol binding sites in rat striatum. , 1981, European journal of pharmacology.

[34]  Guillermo M. Alexander,et al.  Quantitative measurement of local cerebral metabolic rate for glucose utilizing tritiated 2-deoxyglucose , 1981, Brain Research.

[35]  S. Iversen,et al.  Sensorimotor impairments following localized kainic acid and 6-hydroxydopamine lesions of the neostriatum , 1982, Brain Research.

[36]  S. Iversen,et al.  Regulatory impairments following selective 6-OHDA lesions of the neostriatum , 1982, Behavioural Brain Research.

[37]  I. Creese Dopamine receptors explained , 1982, Trends in Neurosciences.

[38]  W. Nauta,et al.  The amygdalostriatal projection in the rat—an anatomical study by anterograde and retrograde tracing methods , 1982, Neuroscience.

[39]  H. Thoenen,et al.  Topography of choline acetyltransferase-containing neurons in the forebrain of the rat , 1982, Neuroscience Letters.

[40]  M. Herkenham,et al.  Light microscopic localization of brain opiate receptors: a general autoradiographic method which preserves tissue quality , 1982 .

[41]  S. O'Connor,et al.  The pharmacology of sulpiride--a dopamine receptor antagonist. , 1982, General pharmacology.

[42]  J. Joyce Multiple dopamine receptors and behavior , 1983, Neuroscience & Biobehavioral Reviews.

[43]  R. Schwarcz,et al.  Differential vulnerability of central neurons of the rat to quinolinic acid , 1983, Neuroscience Letters.

[44]  R. Beninger The role of dopamine in locomotor activity and learning , 1983, Brain Research Reviews.

[45]  R. Schwarcz,et al.  Quinolinic acid: an endogenous metabolite that produces axon-sparing lesions in rat brain. , 1983, Science.

[46]  A. Albanese,et al.  Organization of the ascending projections from the ventral tegmental area: A multiple fluorescent retrograde tracer study in the rat , 1983, The Journal of comparative neurology.

[47]  H. Fibiger,et al.  A comparison of the distribution of central cholinergic neurons as demonstrated by acetylcholinesterase pharmacohistochemistry and choline acetyltransferase immunohistochemistry , 1983, Brain Research Bulletin.

[48]  M. Dubocovich,et al.  Comparison of dopamine receptor sites labeled by [3H]-S-sulpiride and [3H]-spiperone in striatum. , 1983, The Journal of pharmacology and experimental therapeutics.

[49]  J. Wamsley,et al.  Autoradiographic localization of [3H]sulpiride binding sites in the rat brain. , 1984, European journal of pharmacology.

[50]  P. L. Carlton,et al.  Dopamine and schizophrenia: An analysis of the theory , 1984, Neuroscience & Biobehavioral Reviews.

[51]  Louis Sokoloff,et al.  Quantitative receptor autoradiography: tissue defatting eliminates differential self-absorption of tritium radiation in gray and white matter of brain , 1984, Brain Research.

[52]  Robert J. Walter,et al.  Computer-assisted video analysis of [3H]spiroperidol binding autoradiographs , 1984, Journal of Neuroscience Methods.

[53]  Receptor autoradiography: the last ten years. , 1984, Journal of receptor research.

[54]  J. C. Stoof,et al.  Two dopamine receptors: biochemistry, physiology and pharmacology. , 1984, Life sciences.

[55]  M. Herkenham Chapter 8 – AUTORADIOGRAPHIC DEMONSTRATION OF RECEPTOR DISTRIBUTIONS , 1984 .

[56]  C. Köhler The distribution of serotonin binding sites in the hippocampal region of the rat brain. An autoradiographic study , 1984, Neuroscience.

[57]  E. Richfield,et al.  Quantitative autoradiography of [3H]sulpiride binding sites in rat brain , 1984, Neuroscience Letters.

[58]  C. Altar,et al.  Quantitative analysis of [3H]spiroperidol binding to rat forebrain sections: Plasticity of neostriatal dopamine receptors after nigrostriatal injury , 1984, Brain Research.

[59]  C. Altar,et al.  Computer imaging and analysis of dopamine (D2) and serotonin (S2) binding sites in rat basal ganglia or neocortex labeled by [3H]spiroperidol. , 1985, The Journal of pharmacology and experimental therapeutics.

[60]  C. Altar,et al.  Brain dopamine and serotonin receptor sites revealed by digital subtraction autoradiography. , 1985, Science.

[61]  M. Kuhar The mismatch problem in receptor mapping studies , 1985, Trends in Neurosciences.

[62]  A. W. Toga,et al.  Quantitative film autoradiography for tritium: Methodological considerations , 1985, Brain Research.

[63]  J. Joyce,et al.  Striatal topography of D-2 receptors correlates with indexes of cholinergic neuron localization , 1985, Neuroscience Letters.

[64]  J. B. Justice,et al.  Dopamine depletion in a striatal subregion disrupts performance of a skilled motor task in the rat , 1985, Brain Research.

[65]  J. Joyce,et al.  Dopamine D-2 receptors in rat caudate-putamen: the lateral to medial gradient does not correspond to dopaminergic innervation , 1985, Brain Research.

[66]  J. Joyce,et al.  Age-related regional loss of caudate-putamen dopamine receptors revealed by quantitative autoradiography , 1986, Brain Research.

[67]  Joachim F. R. König,et al.  The rat brain: A stereotaxic atlas of the forebrain and lower parts of the brain stem , 1986 .

[68]  J. Marshall,et al.  Dopamine in the lateral caudate-putamen of the rat is essential for somatosensory orientation. , 1986, Behavioral neuroscience.