COVID-19 pandemic reveals the peril of ignoring metadata standards

Efficient response to the pandemic through the mobilization of the larger scientific community is challenged by the limited reusability of the available primary genomic data. Here, the Genomic Standards Consortium board highlights the essential need for contextual genomic data FAIRness, for empowering key data-driven biological questions.

[1]  Erik Schultes,et al.  The FAIR Guiding Principles for scientific data management and stewardship , 2016, Scientific Data.

[2]  Nikos Kyrpides,et al.  The Positive Role of the Ecological Community in the Genomic Revolution , 2006, Microbial Ecology.

[3]  Policy,et al.  Open Science by Design , 2018 .

[4]  Zhang Zhang,et al.  Database Resources of the National Genomics Data Center in 2020 , 2019, Nucleic Acids Res..

[5]  Rob Knight,et al.  QIIME 2 Enables Comprehensive End‐to‐End Analysis of Diverse Microbiome Data and Comparative Studies with Publicly Available Data , 2020, Current protocols in bioinformatics.

[6]  Suisha Liang,et al.  Taxonomic structure and functional association of foxtail millet root microbiome , 2017, GigaScience.

[7]  Dawn Field,et al.  Meeting report: eGenomics: Cataloguing our Complete Genome Collection II. , 2006, Omics : a journal of integrative biology.

[8]  B. Fitzgerald Guidance Regarding Methods for De-identification of Protected Health Information in Accordance with the Health Insurance Portability and Accountability Act (HIPAA) Privacy Rule , 2015 .

[9]  Trevor Bedford,et al.  Nextstrain: real-time tracking of pathogen evolution , 2017, bioRxiv.

[10]  V. Stein,et al.  iFLinkC: an iterative functional linker cloning strategy for the combinatorial assembly and recombination of linker peptides with functional domains , 2020, Nucleic acids research.

[11]  Graziano Pesole,et al.  The metagenomic data life-cycle: standards and best practices , 2017, GigaScience.

[12]  Massimiliano Izzo,et al.  FAIRsharing as a community approach to standards, repositories and policies , 2019, Nature Biotechnology.

[13]  Michelle Giglio,et al.  Human Disease Ontology 2018 update: classification, content and workflow expansion , 2018, Nucleic Acids Res..

[14]  Guy Cochrane,et al.  The International Nucleotide Sequence Database Collaboration , 2011, Nucleic Acids Res..

[15]  Emily S. Charlson,et al.  Minimum information about a marker gene sequence (MIMARKS) and minimum information about any (x) sequence (MIxS) specifications , 2011, Nature Biotechnology.

[16]  Emmanuel Dias-Neto,et al.  The Metagenomics and Metadesign of the Subways and Urban Biomes (MetaSUB) International Consortium inaugural meeting report , 2016, Microbiome.

[17]  Robert D. Finn,et al.  MGnify: the microbiome analysis resource in 2020 , 2019, Nucleic Acids Res..

[18]  Andreas Wilke,et al.  MG-RAST version 4 - lessons learned from a decade of low-budget ultra-high-throughput metagenome analysis , 2019, Briefings Bioinform..

[19]  I-Min A. Chen,et al.  Genomes OnLine database (GOLD) v.7: updates and new features , 2018, Nucleic Acids Res..

[20]  Stefan Elbe,et al.  Data, disease and diplomacy: GISAID's innovative contribution to global health , 2017, Global challenges.

[21]  Chris F. Taylor,et al.  The minimum information about a genome sequence (MIGS) specification , 2008, Nature Biotechnology.

[22]  Chris Mungall,et al.  The environment ontology in 2016: bridging domains with increased scope, semantic density, and interoperation , 2016, Journal of Biomedical Semantics.

[23]  Renzo Kottmann,et al.  eGenomics: Cataloguing Our Complete Genome Collection III , 2007, Comparative and Functional Genomics.