Spectral Polynomial Algorithms for Computing Bi-Diagonal Representations for Phase Type Distributions and Matrix-Exponential Distributions

In this paper, we develop two spectral polynomial algorithms for computing bi-diagonal representations of matrix-exponential distributions and phase type (PH) distributions. The algorithms only use information about the spectrum of the original representation and, consequently, are efficient and easy to implement. For PH-representations with only real eigenvalues, some conditions are identified for the bi-diagonal representations to be ordered Coxian representations. It is shown that every PH-representation with a symmetric PH-generator has an equivalent ordered Coxian representation of the same or a smaller order. An upper bound of the PH-order of a PH-distribution with a triangular or symmetric PH-generator is obtained.

[1]  Tobias Rydén On identifiability and order of continuous-time aggregated Markov chains, Markov-modulated Poisson processes, and phase-type distributions , 1996 .

[2]  E. Seneta Non-negative matrices;: An introduction to theory and applications , 1973 .

[3]  C. Commault,et al.  A generic property of phase-type representations , 2002, Journal of Applied Probability.

[4]  C. O'Cinneide Phase-type distributions: open problems and a few properties , 1999 .

[5]  C. O'Cinneide On non-uniqueness of representations of phase-type distributions , 1989 .

[6]  C. O'Cinneide Characterization of phase-type distributions , 1990 .

[7]  Ren Asmussen,et al.  Fitting Phase-type Distributions via the EM Algorithm , 1996 .

[8]  Marcel F. Neuts,et al.  Matrix-geometric solutions in stochastic models - an algorithmic approach , 1982 .

[9]  Tom Burr,et al.  Introduction to Matrix Analytic Methods in Stochastic Modeling , 2001, Technometrics.

[10]  角谷 靜夫 Non-negative matrixノ固有値ニツイテ , 1939 .

[11]  Christian Commault,et al.  Linear Positive Systems and Phase-type Representations , 2003, POSTA.

[12]  Christian Commault,et al.  Phase-type distributions and representations: Some results and open problems for system theory , 2003 .

[13]  Tobias Rydén,et al.  On identifiability and order of continuous-time aggregated Markov chains, Markov-modulated Poisson processes, and phase-type distributions , 1996, Journal of Applied Probability.

[14]  C. Micchelli,et al.  On functions which preserve the class of Stieltjes matrices , 1979 .

[15]  Renhai Yao A proof of the steepest increase conjecture of a phase-type density , 2002 .

[16]  C. Commault,et al.  Sparse representations of phase-type distributions , 1999 .

[17]  D. Cox A use of complex probabilities in the theory of stochastic processes , 1955, Mathematical Proceedings of the Cambridge Philosophical Society.

[18]  Robert S. Maier The Algebraic Construction of Phase-Type Distributions , 1991 .

[19]  Qi-Ming He,et al.  An Algorithm for Computing Minimal % Coxian Representations , 2008, INFORMS J. Comput..

[20]  A. David,et al.  The least variable phase type distribution is Erlang , 1987 .

[21]  丸山 徹 Convex Analysisの二,三の進展について , 1977 .

[22]  Vaidyanathan Ramaswami,et al.  Introduction to Matrix Analytic Methods in Stochastic Modeling , 1999, ASA-SIAM Series on Statistics and Applied Mathematics.

[23]  Colm Art O'Cinneide,et al.  Phase-Type Distributions and Majorization , 1991 .

[24]  Robert S. Maier,et al.  A closure characterisation of phase-type distributions , 1992 .

[25]  I. Olkin,et al.  Inequalities: Theory of Majorization and Its Applications , 1980 .

[26]  A. Cumani On the canonical representation of homogeneous markov processes modelling failure - time distributions , 1982 .

[27]  Upendra Dave,et al.  Applied Probability and Queues , 1987 .

[28]  Qi-Ming He,et al.  PH-Invariant Polytopes and Coxian Representations of Phase Type Distributions , 2006 .

[29]  Attahiru Sule Alfa,et al.  Advances in matrix-analytic methods for stochastic models , 1998 .

[30]  Mogens Bladt,et al.  Renewal Theory and Queueing Algorithms for Matrix-Exponential Distributions , 1996 .

[31]  S. Asmussen Exponential families generated by phase-type distributions and other Markov lifetimes , 1989 .

[32]  D. Blackwell,et al.  On the Identifiability Problem for Functions of Finite Markov Chains , 1957 .

[34]  M. Dehon,et al.  A geometric interpretation of the relations between the exponential and generalized Erlang distributions , 1982, Advances in Applied Probability.

[35]  Colm Art O'Cinneide,et al.  Triangular order of triangular phase-type distributions ∗ , 1993 .

[36]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[37]  Peter Lancaster,et al.  The theory of matrices , 1969 .

[38]  Christian Commault,et al.  On dual and minimal phase-type representations , 1993 .

[39]  C. Commault,et al.  An invariant of representations of phase-type distributions and some applications , 1996 .

[40]  Peter G. Taylor,et al.  Advances in Algorithmic Methods for Stochastic Models , 2000 .

[41]  Peter G. Taylor,et al.  Matrix-analytic methods: theory and applications , 2002 .

[42]  F. R. Gantmakher The Theory of Matrices , 1984 .

[43]  Shun-ichi Amari,et al.  Identifiability of hidden Markov information sources and their minimum degrees of freedom , 1992, IEEE Trans. Inf. Theory.

[44]  Srinivas R. Chakravarthy,et al.  Matrix-Analytic Methods in Stochastic Models , 1996 .

[45]  W. G. Marchal,et al.  Characterizations of generalized hyperexponential distribution functions , 1987 .