Controlling Necking in Extrusion Film Casting Using Polymer Nanocomposites

ABSTRACT The research described was concerned with the effect of layered-silicate-based organically modified nanoclay fillers on controlling the extent of necking in a polymer melt extrusion film casting (EFC) process. We show that a linear polythylene resin (such as a linear low-density polyethylene—LLDPE) filled with a very low percentage of well-dispersed (or intercalated) nanoclay displays an enhanced resistance to the necking phenomenon. In general, melt-compounded nanoclay-filled LLDPE resin formulations displayed a higher final film width (less necking), thus a lower final film thickness (greater draw down for the same draw ratio), and cooled down faster when compared to the base LLDPE resin. Incorporation of nanoclay filler in the mainly linear chain LLDPE resin led to significant modification of the melt rheological properties that, in turn, affected the melt processability of these formulations. Primarily, the intercalated nanoclay-filled LLDPE formulations displayed the presence of strain-hardening in unaxial extensional rheology. Additionally, the presence of well-dispersed nanoclay in the LLDPE resin led to a display of prominent extrudate swell indicating the presence of melt elasticity in such formulations. The presence of melt elasticity, as shown by shear rheology and strain-hardening, observed by uniaxial extensional rheology, contributed to the LLDPE nanoclay formulations displaying an enhanced resistance to necking for these films. It can be concluded that linear chain polymers susceptible to necking in an EFC process can be made more resistant to such necking by using nanoclay fillers at very low levels of loading.

[1]  H. Pol,et al.  New insights into the use of multi-mode phenomenological constitutive equations to model extrusion film casting process , 2017 .

[2]  H. Pol,et al.  Necking in Extrusion Film Casting: Numerical Predictions of the Maxwell Model and Comparison with Experiments , 2016 .

[3]  H. Pol,et al.  Extrusion film casting of long chain branched polypropylene , 2015 .

[4]  H. Pol,et al.  Necking in extrusion film casting: The role of macromolecular architecture , 2013 .

[5]  Vineeta Saxena Nigam,et al.  Preparation of Nanoclay/Polypropylene Nanocomposite and Study of its Rheological and Mechanical Properties , 2013 .

[6]  H. Pol,et al.  Nonisothermal analysis of extrusion film casting process using molecular constitutive equations , 2013, Rheologica Acta.

[7]  G. Lamberti Flow-Induced Crystallization During Isotactic Polypropylene Film Casting , 2011 .

[8]  Yihu Song,et al.  Linear viscoelasticity of polymer melts filled with nano-sized fillers , 2010 .

[9]  G. Harrison,et al.  The processing of polypropylene cast films. I. Impact of material properties and processing conditions on film formation , 2010 .

[10]  T. Kajiwara,et al.  The effect of viscoelasticity on the extrusion drawing in film-casting process , 2010 .

[11]  T. Kajiwara,et al.  A neck‐in model in extrusion lamination process , 2010 .

[12]  D. Baird,et al.  Effect of Sparse Long-chain Branching on the Film-casting Behavior for a Series of Well-defined HDPEs , 2009 .

[13]  M. Jollands,et al.  Foaming behavior of high-melt strength polypropylene/clay nanocomposites , 2009 .

[14]  Michael Gschweitl,et al.  Estimation of reinforcement in compatibilized polypropylene nanocomposites by extensional rheology , 2009 .

[15]  D. Baird,et al.  Sparse Long-chain Branching's Effect on the Film-casting Behavior of PE , 2009 .

[16]  H. Pol,et al.  A Geometrical Solution to the Sharkskin Instability , 2007 .

[17]  Seung-Hee Lee,et al.  Rheological behavior of polypropylene/layered silicate nanocomposites prepared by melt compounding in shear and elongational flows , 2007 .

[18]  J. Agassant,et al.  Non-isothermal viscoelastic numerical model of the cast-film process , 2006 .

[19]  K. Aniunoh,et al.  Experimental Investigation of Film Formation: Film Casting , 2006 .

[20]  Kwang Soo Cho,et al.  Rheological behavior of polymer/layered silicate nanocomposites under uniaxial extensional flow , 2006 .

[21]  M. Osman,et al.  Effect of the particle size on the viscoelastic properties of filled polyethylene , 2006 .

[22]  G. Marin,et al.  The draw ratio–Deborah number diagram: A useful tool for coating applications , 2006 .

[23]  G. Titomanlio,et al.  Analysis of Film Casting Process: Effect of Cooling during the Path in Air , 2006 .

[24]  S. Ray Rheology of Polymer/Layered Silicate Nanocomposites , 2006 .

[25]  Gaetano Lamberti,et al.  Analysis of film casting process: The heat transfer phenomena , 2005 .

[26]  Rahul K Gupta,et al.  Shear and extensional rheology of EVA/layered silicate-nanocomposites , 2005 .

[27]  C. Koo,et al.  Melt-extensional properties and orientation behaviors of polypropylene-layered silicate nanocomposites , 2005 .

[28]  Rahul K Gupta,et al.  Morphology of EVA based nanocomposites under shear and extensional flow , 2004 .

[29]  G. Titomanlio,et al.  Modeling flow induced crystallization in film casting of polypropylene , 2004 .

[30]  Rahul K Gupta,et al.  Effect of vinyl acetate content and silicate loading on EVA nanocomposites under shear and extensional flow , 2004 .

[31]  G. Titomanlio,et al.  Modeling the interactions between light and crystallizing polymer during fast cooling , 2004 .

[32]  Suprakas Sinha Ray,et al.  POLYMER/LAYERED SILICATE NANOCOMPOSITES: A REVIEW FROM PREPARATION TO PROCESSING , 2003 .

[33]  Hisahiro Ito,et al.  2D Flow Analysis of Film Casting Process , 2003 .

[34]  Hisahiro Ito,et al.  A Model of Neck-in Phenomenon in Film Casting Process , 2003 .

[35]  G. Titomanlio,et al.  Evidences of flow induced crystallization during characterized Film casting experiments , 2002 .

[36]  V. Brucato,et al.  Orientation and crystallinity in film casting of polypropylene , 2002 .

[37]  V. Brucato,et al.  Measurement and modelling of the film casting process: 2. Temperature distribution along draw direction , 2002 .

[38]  Donald R Paul,et al.  Effect of organoclay structure on nylon 6 nanocomposite morphology and properties , 2002 .

[39]  V. Brucato,et al.  Measurement and modelling of the film casting process 1. Width distribution along draw direction , 2001 .

[40]  Naoki Satoh,et al.  Viscoelastic simulation of film casting process for a polymer melt , 2001 .

[41]  I. Chung,et al.  Effect of aspect ratio of clay on melt extensional process of maleated polyethylene/clay nanocomposites , 2001 .

[42]  T. Kotaka,et al.  A House of Cards Structure in Polypropylene/Clay Nanocomposites under Elongational Flow , 2001 .

[43]  K. Canning,et al.  Film Casting of a Low Density Polyethylene Melt , 2001 .

[44]  A. Lele,et al.  A rheological study on the kinetics of hybrid formation in polypropylene nanocomposites , 2001 .

[45]  Ramanan Krishnamoorti,et al.  Linear Viscoelasticity of Disordered Polystyrene−Polyisoprene Block Copolymer Based Layered-Silicate Nanocomposites , 2000 .

[46]  D. Acierno,et al.  Film casting of polyethylene terephthalate : Experiments and model comparisons , 2000 .

[47]  Jean-François Agassant,et al.  Numerical simulation of the film casting process , 1999 .

[48]  Jean-François Agassant,et al.  Stationary and stability analysis of the film casting process 1 Dedicated to Professor Marcel J. Cro , 1998 .

[49]  E. Giannelis,et al.  Rheology of End-Tethered Polymer Layered Silicate Nanocomposites , 1997 .

[50]  J. Agassant,et al.  Study of the stability of the film casting process , 1996 .

[51]  Emmanuel P. Giannelis,et al.  Structure and Dynamics of Polymer-Layered Silicate Nanocomposites , 1996 .

[52]  Vardarajan R. Iyengar,et al.  Film casting of a modified Giesekus fluid: Stability analysis , 1996 .

[53]  Donald G. Baird,et al.  Polymer Processing: Principles and Design , 1995 .

[54]  J. Agassant,et al.  Stationary and Dynamic Analysis of Film Casting Process , 1994 .

[55]  Richard A. Vaia,et al.  Synthesis and properties of two-dimensional nanostructures by direct intercalation of polymer melts in layered silicates , 1993 .

[56]  Vardarajan R. Iyengar,et al.  Film casting of a modified Giesekus fluid : a steady-state analysis , 1993 .

[57]  Jean-Marc Haudin,et al.  Isothermal and Anisothermal Models for Cast Film Extrusion , 1992 .

[58]  C. Macosko,et al.  Effect of reinforcing fillers on the rheology of polymer melts , 1992 .

[59]  J. Haudin,et al.  CAST FILM EXTRUSION OF POLYPROPYLENE. THERMOMECHANICAL AND PHYSICAL ASPECTS , 1991 .

[60]  Jean-François Agassant,et al.  Polymer processing: Principles and modeling , 1991 .

[61]  T. Papanastasiou,et al.  Film casting of viscoelastic liquid , 1991 .

[62]  J. Haudin,et al.  Cast Film Extrusion of Polypropylene Films , 1989 .

[63]  Nitin R. Anturkar,et al.  Draw resonance in film casting of viscoelastic fluids: A linear stability analysis , 1988 .

[64]  L. Erwin,et al.  Causes of edge beads in cast films , 1986 .

[65]  J. Pearson,et al.  Mechanics of polymer processing , 1985 .

[66]  Y. L. Yeow,et al.  On the stability of extending films: a model for the film casting process , 1974, Journal of Fluid Mechanics.