High sensitive determination of zinc with novel water-soluble small molecular fluorescent sensor.

[1]  E. Roussakis,et al.  ICPBCZin: a red emitting ratiometric fluorescent indicator with nanomolar affinity for Zn2+ ions. , 2008, Cell calcium.

[2]  A. Tong,et al.  Ratiometric chemosensor for fluorescent determination of Zn2+ in aqueous ethanol. , 2008, Analytica chimica acta.

[3]  Hua Jiang,et al.  Modulating affinities of di-2-picolylamine (DPA)-substituted quinoline sensors for zinc ions by varying pendant ligands. , 2008, Inorganic chemistry.

[4]  Quan Gan,et al.  A water-soluble, small molecular fluorescent sensor with femtomolar sensitivity for zinc ion. , 2007, Organic letters.

[5]  G. Inzelt,et al.  Voltammetry as an alternative tool for trace metal detection in peloid marine sediments , 2007 .

[6]  Sivaramapanicker Sreejith,et al.  Ratiometric and near-infrared molecular probes for the detection and imaging of zinc ions. , 2007, Chemistry, an Asian journal.

[7]  S. Das,et al.  Effect of zinc concentration and experimental parameters on high stress abrasive wear behaviour of Al–Zn alloys: A factorial design approach , 2005 .

[8]  R. Thompson Studying zinc biology with fluorescence: ain't we got fun? , 2005, Current opinion in chemical biology.

[9]  Y. Urano,et al.  Development of a zinc ion-selective luminescent lanthanide chemosensor for biological applications. , 2004, Journal of the American Chemical Society.

[10]  Zijian Guo,et al.  Fluorescent detection of zinc in biological systems: recent development on the design of chemosensors and biosensors , 2004 .

[11]  K. Gee,et al.  A new mitochondrial fluorescent zinc sensor. , 2003, Cell calcium.

[12]  F. Scheller,et al.  Electrochemistry of immobilized CuZnSOD and FeSOD and their interaction with superoxide radicals. , 2003, Biosensors & bioelectronics.

[13]  Ashutosh Kumar Singh,et al.  Pyrogallol Immobilized Amberlite XAD-2: A Newly Designed Collector for Enrichment of Metal Ions Prior to their Determination by Flame Atomic Absorption Spectrometry , 2001 .

[14]  M. Licchelli,et al.  The design of luminescent sensors for anions and ionisable analytes , 2000 .

[15]  A. Singh,et al.  Thiosalicylic acid-immobilized Amberlite XAD-2: metal sorption behaviour and applications in estimation of metal ions by flame atomic absorption spectrometry. , 2000, The Analyst.

[16]  D. Choi,et al.  Zinc and brain injury. , 1998, Annual review of neuroscience.

[17]  J. Berg,et al.  The Galvanization of Biology: A Growing Appreciation for the Roles of Zinc , 1996, Science.

[18]  J. Xu,et al.  Quantitative determination of serum iron in human blood by high-performance capillary electrophoresis. , 1995, Journal of chromatography. B, Biomedical applications.

[19]  N. Iki,et al.  High-performance separation and determination of Co(III) and Ni(II) chelates of 4-(2-pyridylazo)resorcinol at femtomole levels by capillary electrophoresis , 1993 .

[20]  W. Buchberger,et al.  Metal ion capillary zone electrophoresis with direct UV detection: determination of transition metals using an 8-hydroxyquinoline- 5-sulphonic acid chelating system , 1993 .

[21]  Michael J. Sepaniak,et al.  Determination of metal ions by capillary zone electrophoresis with on-column chelation using 8-hydroxyquinoline-5-sulfonic acid , 1991 .

[22]  T. Miura,et al.  REACTIONS OF DIMETHYLMETHYLTHIOSULFONIUM FLUOROBORATE WITH SOME NUCLEOPHILES , 1975 .

[23]  C. E. White,et al.  Fluorescence analysis : a practical approach , 1970 .