Deformable Parts Correlation Filters for Robust Visual Tracking

Deformable parts models show a great potential in tracking by principally addressing nonrigid object deformations and self occlusions, but according to recent benchmarks, they often lag behind the holistic approaches. The reason is that potentially large number of degrees of freedom have to be estimated for object localization and simplifications of the constellation topology are often assumed to make the inference tractable. We present a new formulation of the constellation model with correlation filters that treats the geometric and visual constraints within a single convex cost function and derive a highly efficient optimization for maximum a posteriori inference of a fully connected constellation. We propose a tracker that models the object at two levels of detail. The coarse level corresponds a root correlation filter and a novel color model for approximate object localization, while the mid-level representation is composed of the new deformable constellation of correlation filters that refine the object location. The resulting tracker is rigorously analyzed on a highly challenging OTB, VOT2014, and VOT2015 benchmarks, exhibits a state-of-the-art performance and runs in real-time.

[1]  Zhibin Hong,et al.  Tracking via Robust Multi-task Multi-view Joint Sparse Representation , 2013, 2013 IEEE International Conference on Computer Vision.

[2]  Simone Calderara,et al.  Visual Tracking: An Experimental Survey , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[3]  Michael Felsberg,et al.  Accurate Scale Estimation for Robust Visual Tracking , 2014, BMVC.

[4]  Youfu Li,et al.  Learning Local Appearances With Sparse Representation for Robust and Fast Visual Tracking , 2015, IEEE Transactions on Cybernetics.

[5]  Jianke Zhu,et al.  A Scale Adaptive Kernel Correlation Filter Tracker with Feature Integration , 2014, ECCV Workshops.

[6]  Walter G. Kropatsch,et al.  Multi-scale 2D tracking of articulated objects using hierarchical spring systems , 2011, Pattern Recognit..

[7]  Matej Kristan,et al.  A Graphical Model for Rapid Obstacle Image-Map Estimation from Unmanned Surface Vehicles , 2014, ACCV.

[8]  Prabhakar S. Naidu Improved optical character recognition by matched filtering , 1974 .

[9]  Lei Zhang,et al.  Real-Time Compressive Tracking , 2012, ECCV.

[10]  S. Nash,et al.  Linear and Nonlinear Optimization , 2008 .

[11]  Jin Gao,et al.  Robust visual tracking using joint scale-spatial correlation filters , 2015, 2015 IEEE International Conference on Image Processing (ICIP).

[12]  Philip H. S. Torr,et al.  Struck: Structured output tracking with kernels , 2011, ICCV.

[13]  Shihong Lao,et al.  Group Tracking: Exploring Mutual Relations for Multiple Object Tracking , 2012, ECCV.

[14]  David Zhang,et al.  Fast Visual Tracking via Dense Spatio-temporal Context Learning , 2014, ECCV.

[15]  Theo Gevers,et al.  A Spatially Constrained Generative Model and an EM Algorithm for Image Segmentation , 2007, IEEE Transactions on Neural Networks.

[16]  Dit-Yan Yeung,et al.  Understanding and Diagnosing Visual Tracking Systems , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[17]  Horst Bischof,et al.  Real-Time Tracking via On-line Boosting , 2006, BMVC.

[18]  Shai Avidan,et al.  Support Vector Tracking , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[19]  Stefan Duffner,et al.  PixelTrack: A Fast Adaptive Algorithm for Tracking Non-rigid Objects , 2013, ICCV.

[20]  Jiri Matas,et al.  The Enhanced Flock of Trackers , 2014, Registration and Recognition in Images and Videos.

[21]  Ming-Hsuan Yang,et al.  Robust Object Tracking with Online Multiple Instance Learning , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[22]  Michael Felsberg,et al.  The Visual Object Tracking VOT2015 Challenge Results , 2015, 2015 IEEE International Conference on Computer Vision Workshop (ICCVW).

[23]  Bill Triggs,et al.  Histograms of oriented gradients for human detection , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[24]  Vibhav Vineet,et al.  Struck: Structured Output Tracking with Kernels , 2016, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[25]  Stan Sclaroff,et al.  MEEM: Robust Tracking via Multiple Experts Using Entropy Minimization , 2014, ECCV.

[26]  Rustam,et al.  The Visual Object Tracking VOT 2013 challenge results , 2018 .

[27]  Roman P. Pflugfelder,et al.  Clustering of static-adaptive correspondences for deformable object tracking , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[28]  Shoujue Wang,et al.  Real-Time Tracking via Deformable Structure Regression Learning , 2014, 2014 22nd International Conference on Pattern Recognition.

[29]  Horst Bischof,et al.  Hough-based tracking of non-rigid objects , 2011, 2011 International Conference on Computer Vision.

[30]  Michael Felsberg,et al.  Adaptive Color Attributes for Real-Time Visual Tracking , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[31]  Matej Kristan,et al.  Fast Image-Based Obstacle Detection From Unmanned Surface Vehicles , 2015, IEEE Transactions on Cybernetics.

[32]  Yanxi Liu,et al.  Online Selection of Discriminative Tracking Features , 2005, IEEE Trans. Pattern Anal. Mach. Intell..

[33]  Alfredo Petrosino,et al.  MATRIOSKA: A Multi-level Approach to Fast Tracking by Learning , 2013, ICIAP.

[34]  Dorin Comaniciu,et al.  Kernel-Based Object Tracking , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[35]  Ming-Hsuan Yang,et al.  Incremental Learning for Robust Visual Tracking , 2008, International Journal of Computer Vision.

[36]  Yanning Zhang,et al.  Part-Based Visual Tracking with Online Latent Structural Learning , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[37]  Jin Gao,et al.  Transfer Learning Based Visual Tracking with Gaussian Processes Regression , 2014, ECCV.

[38]  Jiri Matas,et al.  A Novel Performance Evaluation Methodology for Single-Target Trackers , 2015, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[39]  Rui Caseiro,et al.  High-Speed Tracking with Kernelized Correlation Filters , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[40]  Zhe Chen,et al.  MUlti-Store Tracker (MUSTer): A cognitive psychology inspired approach to object tracking , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[41]  Michael Felsberg,et al.  The Visual Object Tracking VOT2013 Challenge Results , 2013, ICCV 2013.

[42]  Ming-Hsuan Yang,et al.  Object Tracking Benchmark , 2015, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[43]  Horst Bischof,et al.  Hough-based tracking of non-rigid objects , 2013, Comput. Vis. Image Underst..

[44]  Xavier Binefa,et al.  Piecewise affine kernel tracking for non-planar targets , 2008, Pattern Recognit..

[45]  Hanqing Lu,et al.  Part Context Learning for Visual Tracking , 2014, BMVC.

[46]  Jesse Hoey Tracking using Flocks of Features, with Application to Assisted Handwashing , 2006, BMVC.

[47]  Junseok Kwon,et al.  Tracking by Sampling and IntegratingMultiple Trackers , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[48]  Alberto Del Bimbo,et al.  Object Tracking by Oversampling Local Features , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[49]  Thomas Mauthner,et al.  In defense of color-based model-free tracking , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[50]  Yang Li,et al.  Reliable Patch Trackers: Robust visual tracking by exploiting reliable patches , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[51]  Bruce A. Draper,et al.  Visual object tracking using adaptive correlation filters , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[52]  Yi Wu,et al.  Online Object Tracking: A Benchmark , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[53]  Ales Leonardis,et al.  Robust Visual Tracking Using an Adaptive Coupled-Layer Visual Model , 2013, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[54]  Haibin Ling,et al.  Robust Visual Tracking and Vehicle Classification via Sparse Representation , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[55]  Changsheng Xu,et al.  Robust Visual Tracking via Exclusive Context Modeling , 2016, IEEE Transactions on Cybernetics.

[56]  Nuno Vasconcelos,et al.  Robust Deformable and Occluded Object Tracking With Dynamic Graph , 2014, IEEE Transactions on Image Processing.

[57]  Ales Leonardis,et al.  Visual Object Tracking Performance Measures Revisited , 2015, IEEE Transactions on Image Processing.