Crystal Structure and Catalytic Mechanism of PglD from Campylobacter jejuni*

The carbohydrate 2, 4-diacetamido-2, 4, 6-trideoxy-α-d-glucopyranose (BacAc2) is found in a variety of eubacterial pathogens. In Campylobacter jejuni, PglD acetylates the C4 amino group on UDP-2-acetamido-4-amino-2, 4, 6-trideoxy-α-d-glucopyranose (UDP-4-amino-sugar) to form UDP-BacAc2. Sequence analysis predicts PglD to be a member of the left-handed β helix family of enzymes. However, poor sequence homology between PglD and left-handed β helix enzymes with existing structural data precludes unambiguous identification of the active site. The co-crystal structures of PglD in the presence of citrate, acetyl coenzyme A, or the UDP-4-amino-sugar were solved. The biological assembly is a trimer with one active site formed between two protomers. Residues lining the active site were identified, and results from functional assays on alanine mutants suggest His-125 is critical for catalysis, whereas His-15 and His-134 are involved in substrate binding. These results are discussed in the context of implications for proteins homologous to PglD in other pathogens.

[1]  T. Sulea,et al.  Structure and active site residues of PglD, an N-acetyltransferase from the bacillosamine synthetic pathway required for N-glycan synthesis in Campylobacter jejuni. , 2008, Biochemistry.

[2]  M. Koomey,et al.  Neisseria gonorrhoeae O-linked pilin glycosylation: functional analyses define both the biosynthetic pathway and glycan structure , 2007, Molecular microbiology.

[3]  M. Vetting,et al.  Structure of the E. coli bifunctional GlmU acetyltransferase active site with substrates and products , 2007, Protein science : a publication of the Protein Society.

[4]  Terry K. Smith,et al.  Structure and reactivity of LpxD, the N-acyltransferase of lipid A biosynthesis , 2007, Proceedings of the National Academy of Sciences.

[5]  B. Imperiali,et al.  In vitro biosynthesis of UDP-N,N'-diacetylbacillosamine by enzymes of the Campylobacter jejuni general protein glycosylation system. , 2006, Biochemistry.

[6]  Barbara Imperiali,et al.  Asparagine-linked protein glycosylation: from eukaryotic to prokaryotic systems. , 2006, Glycobiology.

[7]  V. Nizet,et al.  The Group B Streptococcal Sialic Acid O-Acetyltransferase Is Encoded by neuD, a Conserved Component of Bacterial Sialic Acid Biosynthetic Gene Clusters* , 2006, Journal of Biological Chemistry.

[8]  C. Szymanski,et al.  Biosynthesis of the N-Linked Glycan in Campylobacter jejuni and Addition onto Protein through Block Transfer , 2006, Journal of bacteriology.

[9]  D. McNally,et al.  Functional Characterization of Dehydratase/Aminotransferase Pairs from Helicobacter and Campylobacter , 2006, Journal of Biological Chemistry.

[10]  J. Li,et al.  Antecedent infections in Fisher syndrome , 2005, Neurology.

[11]  P. Cook,et al.  Chemical mechanism of the serine acetyltransferase from Haemophilus influenzae. , 2004, Biochemistry.

[12]  A. Sjöstedt,et al.  Tularaemia: bioterrorism defence renews interest in Francisella tularensis , 2004, Nature Reviews Microbiology.

[13]  Kevin Cowtan,et al.  research papers Acta Crystallographica Section D Biological , 2005 .

[14]  C. Szymanski,et al.  N-Linked Protein Glycosylation Is Required for Full Competence in Campylobacter jejuni 81-176 , 2004, Journal of bacteriology.

[15]  V. E. Pye,et al.  The Structure and Mechanism of Serine Acetyltransferase from Escherichia coli* , 2004, Journal of Biological Chemistry.

[16]  P. Hitchen,et al.  Unique modifications with phosphocholine and phosphoethanolamine define alternate antigenic forms of Neisseria gonorrhoeae type IV pili. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[17]  V. DiRita,et al.  Identification of Campylobacter jejuni genes involved in commensal colonization of the chick gastrointestinal tract , 2004, Molecular microbiology.

[18]  W. Stafford,et al.  Analysis of heterologous interacting systems by sedimentation velocity: curve fitting algorithms for estimation of sedimentation coefficients, equilibrium and kinetic constants. , 2004, Biophysical chemistry.

[19]  Folker Meyer,et al.  Complete genome sequence and analysis of Wolinella succinogenes , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[20]  J. Rafferty,et al.  Structural Basis of Synercid® (Quinupristin-Dalfopristin) Resistance in Gram-positive Bacterial Pathogens* , 2003, Journal of Biological Chemistry.

[21]  J. Naismith,et al.  Structural and mechanistic basis of bacterial sugar nucleotide-modifying enzymes. , 2003, Biochemistry.

[22]  C. Szymanski,et al.  Structure of the N-Linked Glycan Present on Multiple Glycoproteins in the Gram-negative Bacterium, Campylobacter jejuni * , 2002, The Journal of Biological Chemistry.

[23]  S. Roderick,et al.  Structure of the lac operon galactoside acetyltransferase. , 2002, Structure.

[24]  M. Sugantino,et al.  Crystal structure of Vat(D): an acetyltransferase that inactivates streptogramin group A antibiotics. , 2002, Biochemistry.

[25]  V S Lamzin,et al.  ARP/wARP and molecular replacement. , 2001, Acta crystallographica. Section D, Biological crystallography.

[26]  H. Biebl,et al.  Production of selenomethionine-labelled proteins using simplified culture conditions and generally applicable host/vector systems. , 2001, Applied Microbiology and Biotechnology.

[27]  L. Gal,et al.  Crystal Structure of Streptococcus pneumoniae N-Acetylglucosamine-1-phosphate Uridyltransferase Bound to Acetyl-coenzyme A Reveals a Novel Active Site Architecture* , 2001, The Journal of Biological Chemistry.

[28]  C. Szymanski,et al.  Evidence for a system of general protein glycosylation in Campylobacter jejuni , 1999, Molecular microbiology.

[29]  P. Schmitz,et al.  The spectrum of antecedent infections in Guillain-Barré syndrome , 1998, Neurology.

[30]  R J Read,et al.  Crystallography & NMR system: A new software suite for macromolecular structure determination. , 1998, Acta crystallographica. Section D, Biological crystallography.

[31]  M. Sugantino,et al.  Structure of the hexapeptide xenobiotic acetyltransferase from Pseudomonas aeruginosa. , 1998, Biochemistry.

[32]  E. Gouaux,et al.  Overexpression of a glutamate receptor (GluR2) ligand binding domain in Escherichia coli: application of a novel protein folding screen. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[33]  S. Roderick,et al.  Purification and crystallization of Pseudomonas aeruginosa chloramphenicol acetyltransferase. , 1997, Proteins.

[34]  S. Roderick,et al.  Purification and crystallization of Pseudomonas aeruginosa chloramphenicol acetyltransferase , 1997 .

[35]  G. Murshudov,et al.  Refinement of macromolecular structures by the maximum-likelihood method. , 1997, Acta crystallographica. Section D, Biological crystallography.

[36]  J. Blanchard,et al.  Three-dimensional structure of tetrahydrodipicolinate N-succinyltransferase. , 1997, Biochemistry.

[37]  H. Schindelin,et al.  A left‐hand beta‐helix revealed by the crystal structure of a carbonic anhydrase from the archaeon Methanosarcina thermophila. , 1996, The EMBO journal.

[38]  R. Hughes,et al.  Campylobacter jejuni infection and Guillain-Barré syndrome. , 1995, The New England journal of medicine.

[39]  C. Raetz,et al.  A Left-Handed Parallel β Helix in the Structure of UDP-N-Acetylglucosamine Acyltransferase , 1995, Science.

[40]  W. V. Shaw,et al.  Structural and Mechanistic Studies of Galactoside Acetyltransferase, the Escherichia coli LacA Gene Product (*) , 1995, The Journal of Biological Chemistry.

[41]  Collaborative Computational,et al.  The CCP4 suite: programs for protein crystallography. , 1994, Acta crystallographica. Section D, Biological crystallography.

[42]  J. Duval,et al.  Identification of the satA gene encoding a streptogramin A acetyltransferase in Enterococcus faecium BM4145 , 1993, Antimicrobial Agents and Chemotherapy.

[43]  S. Galloway,et al.  UDP-N-acetylglucosamine acyltransferase of Escherichia coli. The first step of endotoxin biosynthesis is thermodynamically unfavorable. , 1993, The Journal of biological chemistry.

[44]  I. Dicker,et al.  What is known about the structure and function of the Escherichia coli protein FirA? , 1992, Molecular microbiology.

[45]  J. Zou,et al.  Improved methods for building protein models in electron density maps and the location of errors in these models. , 1991, Acta crystallographica. Section A, Foundations of crystallography.

[46]  S. French,et al.  On the treatment of negative intensity observations , 1978 .

[47]  J. Strominger,et al.  Purification and characterization of a prokaryotic glycoprotein from the cell envelope of Halobacterium salinarium. , 1976, The Journal of biological chemistry.

[48]  N. Sharon,et al.  Structural studies of 4-acetamido-2-amino-2,4,6-trideoxy-D-glucose (N-acetylbacillosamine), the N-acetyldiamino sugar of Bacillus licheniformis. , 1973, The Journal of biological chemistry.

[49]  J. W. COOK,et al.  “The Merck Index” , 1953, Nature.

[50]  Axel T. Brunger,et al.  Assessment of Phase Accuracy by Cross Validation: the Free R Value. Methods and Applications , 1993 .