Performance comparison of InGaAsP lasers emitting at 1.3 and 1.55 µm for lightwave system applications

Experimental results relative to the performances of real index-guided InGaAsP lasers emitting near 1.3 and 1.55 μm are described and compared. The laser structures discussed are the etched mesa buried heterostructure, channeled substrate buried heterostructure, and the double channel planar buried heterostructure. The effect of Auger recombination and intervalence band absorption on the threshold current and external differential quantum efficiency is discussed. The effect of the larger Auger coefficient at 1.55 μm is compensated by a lower carrier density at threshold at 1.55 μm so that the total nonradiative current loss for lasers emitting at 1.55 μm is not significantly larger than that for lasers emitting at 1.3 μm. A small linear shunt leakage current (∼10 mA) can increase the T0 to ∼100K. We report threshold currents as low as 11 and 15 mA (at 30°C) and continuous-wave operating temperatures as high as 130 and 110°C for lasers emitting at 1.3 and 1.55 μm, respectively.

[1]  H. Ishikawa,et al.  V-grooved substrate buried heterostructure InGaAsP/InP laser by one-step epitaxy , 1982 .

[2]  N.E. Schumaker,et al.  Ambipolar transport in double heterostructure injection lasers , 1980, IEEE Electron Device Letters.

[3]  J. Butler Theory of Transverse Cavity Mode Selection in Homojunction and Heterojunction Semiconductor Diode Lasers , 1971 .

[4]  Y. Suematsu,et al.  Long-wavelength optical fiber communication , 1983, Proceedings of the IEEE.

[5]  R. Lang,et al.  Nonradiative recombination in InGaAsP/InP light sources causing light emitting diode output saturation and strong laser‐threshold‐current temperature sensitivity , 1981 .

[6]  H. Ishikawa,et al.  V-Grooved Substrate Buried Heterostructure InGaAsP/InP Laser with Smooth Far Field Pattern and Stable Aging Characteristics , 1981 .

[7]  Suzanne R. Nagel,et al.  Current status of MCVD: process and performance , 1982 .

[8]  N. Olsson,et al.  Dynamic Linewidth of Amplitude-Modulated Single-Longitudinal-Mode InGaAsP Semiconductor Lasers , 1984 .

[9]  R. L. Hartman,et al.  Implementation of the proposed reliability assurance strategy for an InGaAsp/InP, planar mesa, buried heterostructure laser operating at 1.3 µm for use in a submarine cable , 1985, AT&T Technical Journal.

[10]  Shinji Tsuji,et al.  Fabrication and characterization of narrow stripe InGaAsP/InP buried heterostructure lasers , 1980 .

[11]  Ikuo Mito,et al.  InGaAsP double-channel- planar-buried-heterostructure laser diode (DC-PBH LD) with effective current confinement , 1983 .

[12]  N. Olsson,et al.  2 Gbit/s operation of single-longitudinal-mode 1.5 μm double-channel planar buried-heterostructure C3 lasers , 1984 .

[13]  G. Arnold,et al.  Semiconductor devices for optical communication , 1982 .

[14]  Niloy K. Dutta,et al.  Channelled‐substrate buried heterostructure InGaAsP/InP lasers with vapor phase epitaxial base structure and liquid phase epitaxial regrowth , 1984 .

[15]  Niloy K. Dutta,et al.  Gain‐current relation for In0.72Ga0.28As0.6P0.4 lasers , 1981 .

[16]  Dynamic linewidth of amplitude-modulated single-longitudinal-mode semiconductor lasers operating at 1.5 μm wavelength , 1984 .

[17]  N. Dutta,et al.  Calculated Auger rates and temperature dependence of threshold for semiconductor lasers emitting at 1.3 and 1.55 μm , 1983 .

[18]  Niloy K. Dutta,et al.  Calculated temperature dependence of threshold current of GaAs‐AlxGa1−xAs double heterostructure lasers , 1981 .

[19]  C. Henry,et al.  The effect of intervalence band absorption on the thermal behavior of InGaAsP lasers , 1983 .

[20]  P. Landsberg,et al.  Auger effect in semiconductors , 1959, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[21]  N. Dutta,et al.  Analysis of leakage currents in 1.3-µm InGaAsP real-index-guided lasers , 1984, Journal of Lightwave Technology.

[22]  Erich P. Ippen,et al.  Nonlinear carrier dynamics in GaxIn1−xAsyP1−y compounds , 1984 .

[23]  S. Akiba,et al.  Growth of Lattice-Matched InGaAsP/InP Double-Heterostructures by the Two-Phase Supercooled Solution Technique , 1977 .

[24]  J. Shah,et al.  Influence of hot carriers on the temperature dependence of threshold in 1.3‐μm InGaAsP lasers , 1982 .

[25]  N. Dutta,et al.  Improved linearity and kink criteria for 1.3‐μm InGaAsP‐InP channeled substrate buried heterostructure lasers , 1984 .

[26]  A. Sugimura,et al.  Band-to-band Auger recombination effect on InGaAsP laser threshold , 1981 .

[27]  N. Dutta,et al.  Effect of auger recombination on the threshold characteristics of gain-guided InGaAsP lasers , 1983 .

[28]  R. A. Linke,et al.  Transient chirping in single-frequency lasers: lightwave systems consequences , 1984 .

[29]  E. Kane,et al.  Band structure of indium antimonide , 1957 .

[30]  Frank Stern,et al.  Calculated spectral dependence of gain in excited GaAs , 1976 .

[31]  S. Akiba,et al.  Low-threshold-current distributed-feedback InGaAsP/InP CW lasers , 1982 .

[32]  Charles Howard Henry,et al.  Minority carrier lifetime and luminescence efficiency of 1.3 µm InGaAsP-InP double heterostructure layers , 1983 .

[33]  James R. Chelikowsky,et al.  Nonlocal pseudopotential calculations for the electronic structure of eleven diamond and zinc-blende semiconductors , 1976 .

[34]  N. Dutta,et al.  Self‐sustained pulsations and negative‐resistance behavior in InGaAsP (λ=1.3 μm) double‐heterostructure lasers , 1980 .

[35]  Masahiro Asada,et al.  The Temperature Dependence of the Efficiency and Threshold Current of In1-xGaxAsyP1-y Lasers Related to Intervalence Band Absorption , 1980 .

[36]  A. Haug Auger recombination in InGaAsP , 1983 .

[37]  Niloy K. Dutta,et al.  CW electrooptical properties of InGaAsP(λ = 1.3 µm) buried-heterostructure lasers , 1981 .

[38]  W. Schmid,et al.  Losses in GaInAs(P)/InP and GaAlSb(As)/GaSb lasers - The influence of the split-off valence band , 1983, IEEE Journal of Quantum Electronics.

[39]  G. Thompson Reply: Analysis of radiative and nonradiative recombination law in lightly doped InGaAsP lasers , 1983 .

[40]  B. Schwartz,et al.  Channeled substrate buried heterostructure InGaAsP/InP laser employing a buried Fe ion implant for current confinement , 1984 .

[41]  S. Personick Receiver design for digital fiber optic communication systems, II , 1973 .

[42]  N. Dutta,et al.  Photoexcited carrier lifetime and Auger recombination in 1.3‐μm InGaAsP , 1983 .

[43]  Niloy K. Dutta,et al.  The case for Auger recombination in In1−xGaxAsyP1−y , 1982 .

[44]  J. Schlafer,et al.  Measurement of radiative and auger recombination rates in p-type InGaAsP diode lasers , 1982 .

[45]  N. A. Olsson,et al.  High‐speed direct single‐frequency modulation with large tuning rate and frequency excursion in cleaved‐coupled‐cavity semiconductor lasers , 1983 .

[46]  John E. Midwinter,et al.  Optical fibers for transmission , 1979 .

[47]  O. Wada,et al.  Direct observation of electron leakage in InGaAsP/InP double heterostructure , 1982 .

[48]  Reduced chirping in coupled‐cavity‐semiconductor lasers , 1984 .

[49]  K. Kishino,et al.  Wavelength variation of 1.6 µm wavelength buried heterostructure GaInAsP/InP lasers due to direct modulation , 1982, IEEE Journal of Quantum Electronics.

[50]  Niloy K. Dutta,et al.  Frequency chirp under current modulaton in InGaAsP injection lasers , 1984 .