Automated Cephalometric Landmark Identification Using Shape and Local Appearance Models

In this paper a method is presented for the automated identification of cephalometric anatomical landmarks in craniofacial cone-beam CT images. This method makes use of statistical models, incorporating both local appearance and shape knowledge obtained from training data. Firstly, the local appearance model captures the local intensity pattern around each anatomical landmark in the image. Secondly, the shape model contains a local and a global component. The former improves the flexibility, whereas the latter improves the robustness of the algorithm. Using a leave-one-out approach to the training data, we assess the overall accuracy of the method. The mean and median error values for all landmarks are equal to 2.55mm and 1.72mm, respectively.

[1]  J Treil,et al.  Three-dimensional cephalometry. , 2001, The Alpha omegan.

[2]  Cordelia Schmid,et al.  A performance evaluation of local descriptors , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[3]  Daniel Cremers,et al.  Statistical shape knowledge in variational image segmentation , 2002 .

[4]  Stan Z. Li,et al.  Markov Random Field Modeling in Computer Vision , 1995, Computer Science Workbench.

[5]  Paul Suetens,et al.  Image Segmentation Using Graph Representations and Local Appearance and Shape Models , 2009, GbRPR.

[6]  Ghassan Hamarneh,et al.  n -SIFT: n -Dimensional Scale Invariant Feature Transform , 2009, IEEE Trans. Image Process..

[7]  Concetto Spampinato,et al.  Automatic cephalometric analysis. , 2009, The Angle orthodontist.

[8]  Martin J. Wainwright,et al.  MAP estimation via agreement on trees: message-passing and linear programming , 2005, IEEE Transactions on Information Theory.

[9]  R. Courant,et al.  Methods of Mathematical Physics , 1962 .

[10]  Gwen R. J. Swennen,et al.  3-D Cephalometric Hard Tissue Landmarks , 2006 .

[11]  Vladimir Kolmogorov,et al.  Convergent Tree-Reweighted Message Passing for Energy Minimization , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[12]  William T. Freeman,et al.  On the optimality of solutions of the max-product belief-propagation algorithm in arbitrary graphs , 2001, IEEE Trans. Inf. Theory.

[13]  Daniel Cremers,et al.  Statistical shape knowledge in variational motion segmentation , 2003, Image Vis. Comput..

[14]  Filip Schutyser,et al.  A New Method of 3-D Cephalometry Part I: The Anatomic Cartesian 3-D Reference System , 2006, The Journal of craniofacial surgery.

[15]  G LoweDavid,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004 .

[16]  Daniel Cremers,et al.  An Integral Solution to Surface Evolution PDEs Via Geo-cuts , 2006, ECCV.

[17]  J. van Leeuwen,et al.  Graph Based Representations in Pattern Recognition , 2003, Lecture Notes in Computer Science.