Engineering the Emission of Broadband 2D Perovskites by Polymer Distributed Bragg Reflectors

Thanks to their broadband emission and solution processability, 2D hybrid perovskite materials are promising for the realization of large area and flexible lighting devices. The deposition of 2D perovskites, however, requires wide range solvents that are incompatible with commodity polymers used for structural support and light management. Here we demonstrate coupling of broad-emitting 2,2-(ethylenedioxy)bis(ethylammonium)PbCl4 perovskite with solution processed polymer distributed Bragg reflectors on both rigid fused silica and flexible polymer substrates. The optical functions of the chemically engineered perovskite were determined by ellipsometric measurements and used to design dielectric multilayer structures with photonic bandgap tunable over the entire visible range. The resulting photonic structures control directionality and spectral enhancement or suppression of the perovskite photoluminescence, in agreement with simple analytical optical models. These results pave the way to the development of ...

[1]  Davide Comoretto,et al.  Demonstration of fluorescence enhancement via Bloch surface waves in all-polymer multilayer structures. , 2016, Physical chemistry chemical physics : PCCP.

[2]  Davide Comoretto,et al.  Polymer Distributed Bragg Reflectors for Vapor Sensing , 2015 .

[3]  Marco Faustini,et al.  Engineering functionality gradients by dip coating process in acceleration mode. , 2014, ACS applied materials & interfaces.

[4]  C. Soci,et al.  Polaron self-localization in white-light emitting hybrid perovskites , 2016, 1603.01284.

[5]  M. Galli,et al.  Spectroscopic Investigation of Artificial Opals Infiltrated with a Heteroaromatic Quadrupolar Dye , 2010 .

[6]  Yang Yang,et al.  Interface engineering of highly efficient perovskite solar cells , 2014, Science.

[7]  Daniel Moses,et al.  Anisotropic photoluminescence properties of oriented poly( p -phenylene-vinylene) films: Effects of dispersion of optical constants , 2007 .

[8]  Guglielmo Lanzani,et al.  Lasing from all-polymer microcavities , 2014 .

[9]  C. Soci,et al.  Excitonic and Polaronic Properties of 2D Hybrid Organic–Inorganic Perovskites , 2017 .

[10]  Behrad Gholipour,et al.  Organometallic Perovskite Metasurfaces , 2017, Advanced materials.

[11]  A. Borghesi,et al.  Photoinduced absorption of oriented poly[1,6-di( N -carbazolyl)-2,4-hexadiyne] , 1996 .

[12]  Karen Forberich,et al.  Coloring Semitransparent Perovskite Solar Cells via Dielectric Mirrors. , 2016, ACS nano.

[13]  Bernd Rech,et al.  A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells , 2016, Science.

[14]  A. Petrozza,et al.  Tuning the light emission properties by band gap engineering in hybrid lead halide perovskite. , 2014, Journal of the American Chemical Society.

[15]  P. Giusto,et al.  Label-Free Vapor Selectivity in Poly(p-Phenylene Oxide) Photonic Crystal Sensors. , 2016, ACS applied materials & interfaces.

[16]  Davide Comoretto,et al.  Cellulose ternary photonic crystal created by solution processing , 2016, Cellulose.

[17]  Jenny Clark,et al.  Two-Photon Poly(phenylenevinylene) DFB Laser† , 2011 .

[18]  M. Patrini,et al.  Fluorescence excitation enhancement by Bloch surface wave in all-polymer one- dimensional photonic structure , 2014 .

[19]  A. Zakhidov,et al.  Solvent Toolkit for Electrochemical Characterization of Hybrid Perovskite Films. , 2017, Analytical chemistry.

[20]  B. Voit,et al.  High refractive index hyperbranched polyvinylsulfides for planar one‐dimensional all‐polymer photonic crystals , 2016 .

[21]  Davide Comoretto,et al.  Directional Enhancement of Spontaneous Emission in Polymer Flexible Microcavities , 2011 .

[22]  X. Zhu,et al.  Mechanism for Broadband White-Light Emission from Two-Dimensional (110) Hybrid Perovskites. , 2016, The journal of physical chemistry letters.

[23]  C. Soci,et al.  Hybrid ZnO:polystyrene nanocomposite for all-polymer photonic crystals , 2015 .

[24]  Cesare Soci,et al.  Lead iodide perovskite light-emitting field-effect transistor , 2015, Nature Communications.

[25]  M. Grätzel,et al.  Sequential deposition as a route to high-performance perovskite-sensitized solar cells , 2013, Nature.

[26]  G. Lanzani,et al.  Distributed feedback lasing from a composite poly(phenylene vinylene)-nanoparticle one-dimensional photonic crystal. , 2009, Nano letters.

[27]  M. D. Birowosuto,et al.  X-ray Scintillation in Lead Halide Perovskite Crystals , 2016, Scientific reports.

[28]  Sandeep Kumar Pathak,et al.  High Photoluminescence Efficiency and Optically Pumped Lasing in Solution-Processed Mixed Halide Perovskite Semiconductors. , 2014, The journal of physical chemistry letters.

[29]  Francesco Scotognella,et al.  Optical properties of periodic, quasi-periodic, and disordered one-dimensional photonic structures , 2017 .

[30]  M. Canepa,et al.  In-plane anisotropic photoresponse in all-polymer planar microcavities , 2016 .

[31]  Geoffrey A Ozin,et al.  Photonic clays: a new family of functional 1D photonic crystals. , 2008, ACS nano.

[32]  Kenneth D. Singer,et al.  Co-extruded mechanically tunable multilayer elastomer laser , 2011 .

[33]  Adam Jaffe,et al.  Intrinsic white-light emission from layered hybrid perovskites. , 2014, Journal of the American Chemical Society.

[34]  D. Mitzi,et al.  Inorganic Perovskites : Structural Versatility for Functional Materials Design , 2016 .

[35]  Martin Maldovan,et al.  25th Anniversary Article: Ordered Polymer Structures for the Engineering of Photons and Phonons , 2013, Advanced materials.

[36]  E. Yablonovitch,et al.  Inhibited spontaneous emission in solid-state physics and electronics. , 1987, Physical review letters.

[37]  M. Johnston,et al.  Highly Efficient Perovskite Solar Cells with Tunable Structural Color , 2015, Nano letters.

[38]  C. Weisbuch,et al.  Impact of planar microcavity effects on light extraction-Part I: basic concepts and analytical trends , 1998 .

[39]  C. Soci,et al.  Broadband Emission in Two-Dimensional Hybrid Perovskites: The Role of Structural Deformation. , 2017, Journal of the American Chemical Society.

[40]  Lin-wang Wang,et al.  Materials and Methods Supplementary Text Fig. S1 Reference (35) Database S1 Atomically Thin Two-dimensional Organic-inorganic Hybrid Perovskites , 2022 .

[41]  Nripan Mathews,et al.  Low-temperature solution-processed wavelength-tunable perovskites for lasing. , 2014, Nature materials.

[42]  Henry J Snaith,et al.  Metal-halide perovskites for photovoltaic and light-emitting devices. , 2015, Nature nanotechnology.

[43]  Richard H. Friend,et al.  Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes , 2015, Science.

[44]  F. Scotognella,et al.  Lasing in one dimensional dye-doped random multilayer. , 2010, Physical chemistry chemical physics : PCCP.

[45]  Francesco Scotognella,et al.  One Dimensional Polymeric Organic Photonic Crystals for DFB Lasers , 2008 .

[46]  Mohammad Khaja Nazeeruddin,et al.  Organohalide Lead Perovskites for Photovoltaic Applications. , 2016, The journal of physical chemistry letters.

[47]  J. Anta,et al.  Photoconducting Bragg Mirrors based on TiO2 Nanoparticle Multilayers , 2008 .

[48]  Jongseung Yoon,et al.  Large-Area Block Copolymer Photonic Gel Films with Solvent-Evaporation-Induced Red- and Blue-Shift Reflective Bands , 2015 .

[49]  John,et al.  Strong localization of photons in certain disordered dielectric superlattices. , 1987, Physical review letters.

[50]  Geoffrey A. Ozin,et al.  Colloidal photonic crystal microchannel array with periodically modulated thickness , 2002 .

[51]  N. Stingelin,et al.  One-pot synthesis of polymer/inorganic hybrids: toward readily accessible, low-loss, and highly tunable refractive index materials and patterns , 2012 .

[52]  Anders Hagfeldt,et al.  Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c5ee03874j Click here for additional data file. , 2016, Energy & environmental science.

[53]  J. Joannopoulos,et al.  Photonic crystals: putting a new twist on light , 1997, Nature.

[54]  H. Bolink,et al.  Efficient photovoltaic and electroluminescent perovskite devices. , 2015, Chemical communications.

[55]  Gengfeng Zheng,et al.  Purcell effect in an organic-inorganic halide perovskite semiconductor microcavity system , 2016 .

[56]  M. Patrini,et al.  All‐Polymer Photonic Microcavities Doped with Perylene Bisimide J‐Aggregates , 2017 .

[57]  Shweta Agarwala,et al.  Perovskite Solar Cells: Beyond Methylammonium Lead Iodide. , 2015, The journal of physical chemistry letters.

[58]  Sang Il Seok,et al.  Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells. , 2014, Nature materials.

[59]  F. Scotognella,et al.  Spin-Coated Polymer and Hybrid Multilayers and Microcavities , 2015 .

[60]  R. Krahne,et al.  Directional fluorescence shaping and lasing in all-polymer microcavities doped with CdSe/CdS dot-in-rod nanocrystals , 2017, 2017 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC).

[61]  Silvia Colodrero,et al.  Porous one dimensional photonic crystals: novel multifunctional materials for environmental and energy applications , 2011 .

[62]  Sandeep Kumar Pathak,et al.  Ultrasmooth organic–inorganic perovskite thin-film formation and crystallization for efficient planar heterojunction solar cells , 2015, Nature Communications.

[63]  E. Thomas,et al.  Electrically Tunable Soft-Solid Block Copolymer Structural Color. , 2015, ACS nano.

[64]  J. Galisteo‐López,et al.  Fine Tuning the Emission Properties of Nanoemitters in Multilayered Structures by Deterministic Control of their Local Photonic Environment , 2015, Small.