Optimal Robust Safety-Critical Control for Dynamic Robotics

We present a novel method of optimal robust control through quadratic programs that offers tracking stability while subject to input and state-based constraints as well as safety-critical constraints for nonlinear dynamical robotic systems in the presence of model uncertainty. The proposed method formulates robust control Lyapunov and barrier functions to provide guarantees of stability and safety in the presence of model uncertainty. We evaluate our proposed control design on dynamic walking of a five-link planar bipedal robot subject to contact force constraints as well as safety-critical precise foot placements on stepping stones, all while subject to model uncertainty. We conduct preliminary experimental validation of the proposed controller on a rectilinear spring-cart system under different types of model uncertainty and perturbations.

[1]  Jessy W. Grizzle,et al.  Experimental Validation of a Framework for the Design of Controllers that Induce Stable Walking in Planar Bipeds , 2004, Int. J. Robotics Res..

[2]  S. Joe Qin,et al.  A survey of industrial model predictive control technology , 2003 .

[3]  J. Doyle,et al.  Robust and optimal control , 1995, Proceedings of 35th IEEE Conference on Decision and Control.

[4]  Russ Tedrake,et al.  Funnel libraries for real-time robust feedback motion planning , 2016, Int. J. Robotics Res..

[5]  Koushil Sreenath,et al.  Torque Saturation in Bipedal Robotic Walking Through Control Lyapunov Function-Based Quadratic Programs , 2013, IEEE Access.

[6]  Debasish Chatterjee,et al.  Input-to-state stability of switched systems and switching adaptive control , 2007, Autom..

[7]  Katie Byl,et al.  Metastable Walking Machines , 2009, Int. J. Robotics Res..

[8]  Farbod Fahimi,et al.  Sliding-Mode Formation Control for Underactuated Surface Vessels , 2007, IEEE Transactions on Robotics.

[9]  Evangelos Theodorou,et al.  Bayesian Learning-Based Adaptive Control for Safety Critical Systems , 2020, 2020 IEEE International Conference on Robotics and Automation (ICRA).

[10]  Jean-Jacques E. Slotine,et al.  The Robust Control of Robot Manipulators , 1985 .

[11]  João Pedro Hespanha,et al.  Lyapunov conditions for input-to-state stability of impulsive systems , 2008, Autom..

[12]  Andy Ruina,et al.  Non-linear robust control for inverted-pendulum 2D walking , 2015, 2015 IEEE International Conference on Robotics and Automation (ICRA).

[13]  Koushil Sreenath,et al.  L1 adaptive control for bipedal robots with control Lyapunov function based quadratic programs , 2015, 2015 American Control Conference (ACC).

[14]  Joel W. Burdick,et al.  Safe Multi-Agent Interaction through Robust Control Barrier Functions with Learned Uncertainties , 2020, 2020 59th IEEE Conference on Decision and Control (CDC).

[15]  Jean-Paul Laumond,et al.  Metastability for High-Dimensional Walking Systems on Stochastically Rough Terrain , 2013, Robotics: Science and Systems.

[16]  Hong Ren Wu,et al.  A robust MIMO terminal sliding mode control scheme for rigid robotic manipulators , 1994, IEEE Trans. Autom. Control..

[17]  Feng Lin,et al.  An optimal control approach to robust control of robot manipulators , 1998, IEEE Trans. Robotics Autom..

[18]  Matthew Johnson-Roberson,et al.  Safe Trajectory Synthesis for Autonomous Driving in Unforeseen Environments , 2017, ArXiv.

[19]  S. Palanki,et al.  Nonlinear control of nonsquare multivariable systems , 2001 .

[20]  Shuzhi Sam Ge,et al.  Adaptive robust controls of biped robots , 2013 .

[21]  Christine Chevallereau,et al.  RABBIT: a testbed for advanced control theory , 2003 .

[22]  Guofan Wu,et al.  Safety-critical and constrained geometric control synthesis using control Lyapunov and control Barrier functions for systems evolving on manifolds , 2015, 2015 American Control Conference (ACC).

[23]  Paulo Tabuada,et al.  Adaptive cruise control: Experimental validation of advanced controllers on scale-model cars , 2015, 2015 American Control Conference (ACC).

[24]  David Angeli,et al.  A characterization of integral input-to-state stability , 2000, IEEE Trans. Autom. Control..

[25]  Jessy W. Grizzle,et al.  Robust event-based stabilization of periodic orbits for hybrid systems: Application to an underactuated 3D bipedal robot , 2013, 2013 American Control Conference.

[26]  Robin Deits,et al.  Footstep planning on uneven terrain with mixed-integer convex optimization , 2014, 2014 IEEE-RAS International Conference on Humanoid Robots.

[27]  Mi-Ching Tsai,et al.  Robust and Optimal Control , 2014 .

[28]  Aaron D. Ames,et al.  Sufficient conditions for the Lipschitz continuity of QP-based multi-objective control of humanoid robots , 2013, 52nd IEEE Conference on Decision and Control.

[29]  Aaron D. Ames,et al.  Control barrier function based quadratic programs with application to bipedal robotic walking , 2015, 2015 American Control Conference (ACC).

[30]  Stephen P. Boyd,et al.  CVXGEN: a code generator for embedded convex optimization , 2011, Optimization and Engineering.

[31]  Konstantinos Karydis,et al.  Probabilistically valid stochastic extensions of deterministic models for systems with uncertainty , 2015, Int. J. Robotics Res..

[32]  Katie Byl,et al.  Meshing hybrid zero dynamics for rough terrain walking , 2015, 2015 IEEE International Conference on Robotics and Automation (ICRA).

[33]  Koushil Sreenath,et al.  Safety-Critical Control for Dynamical Bipedal Walking with Precise Footstep Placement , 2015, ADHS.

[34]  Paulo Tabuada,et al.  Control barrier function based quadratic programs with application to adaptive cruise control , 2014, 53rd IEEE Conference on Decision and Control.

[35]  Koushil Sreenath,et al.  Exponential Control Barrier Functions for enforcing high relative-degree safety-critical constraints , 2016, 2016 American Control Conference (ACC).

[36]  Christopher G. Atkeson,et al.  Optimization‐based Full Body Control for the DARPA Robotics Challenge , 2015, J. Field Robotics.

[37]  Jaime F. Fisac,et al.  Planning, Fast and Slow: A Framework for Adaptive Real-Time Safe Trajectory Planning , 2017, 2018 IEEE International Conference on Robotics and Automation (ICRA).

[38]  Stephen P. Boyd,et al.  Fast Model Predictive Control Using Online Optimization , 2010, IEEE Transactions on Control Systems Technology.

[39]  Paulo Tabuada,et al.  Robustness of Control Barrier Functions for Safety Critical Control , 2016, ADHS.

[40]  Frank L. Lewis,et al.  Optimal Control , 1986 .

[41]  Chun-Yi Su,et al.  A sliding mode controller with bound estimation for robot manipulators , 1993, IEEE Trans. Robotics Autom..

[42]  Koushil Sreenath,et al.  Rapidly Exponentially Stabilizing Control Lyapunov Functions and Hybrid Zero Dynamics , 2014, IEEE Transactions on Automatic Control.

[43]  Koushil Sreenath,et al.  Optimal Robust Control for Bipedal Robots through Control Lyapunov Function based Quadratic Programs , 2015, Robotics: Science and Systems.

[44]  Petros A. Ioannou,et al.  Instability analysis and robust adaptive control of robotic manipulators , 1989, IEEE Trans. Robotics Autom..

[45]  Christopher Edwards,et al.  Sliding mode control : theory and applications , 1998 .

[46]  Eduardo Sontag,et al.  On characterizations of the input-to-state stability property , 1995 .

[47]  Vadim I. Utkin,et al.  Sliding mode control in dynamic systems , 1993, Proceedings of 32nd IEEE Conference on Decision and Control.

[48]  Jessy W. Grizzle,et al.  Iterative Robust Stabilization Algorithm for Periodic Orbits of Hybrid Dynamical Systems: Application to Bipedal Running , 2015, ADHS.

[49]  Chaohong Cai,et al.  Characterizations of input-to-state stability for hybrid systems , 2009, Syst. Control. Lett..

[50]  Eduardo D. Sontag,et al.  On the Input-to-State Stability Property , 1995, Eur. J. Control.

[51]  Eduardo Sontag A universal construction of Artstein's theorem on nonlinear stabilization , 1989 .

[52]  Koushil Sreenath,et al.  Optimal robust control for constrained nonlinear hybrid systems with application to bipedal locomotion , 2016, 2016 American Control Conference (ACC).