Simulating Martian regolith in the laboratory

Abstract Regolith and dust cover the surfaces of the Solar Systems solid bodies, and thus constitute the visible surface of these objects. The topmost layers also interact with space or the atmosphere in the case of Mars, Venus and Titan. Surface probes have been proposed, studied and flown to some of these worlds. Landers and some of the mechanisms they carry, e.g. sampling devices, drills and subsurface probes (“moles”) will interact with the porous surface layer. The absence of true extraterrestrial test materials in ample quantities restricts experiments to the use of soil or regolith analogue materials. Several standardized soil simulants have been developed and produced and are commonly used for a variety of laboratory experiments. In this paper we intend to give an overview of some of the most important soil simulants, and describe experiments (penetrometry, thermal conductivity, aeolian transport, goniometry, spectroscopy and exobiology) made in various European laboratory facilities.

[1]  Richard V. Morris,et al.  JSC Mars-1 - Martian regolith simulant , 1997 .

[2]  Gerhard Kminek,et al.  ExoMars - searching for life on the Red Planet , 2006 .

[3]  K. Gordon,et al.  Characteristics of a Simulant for Lunar Surface Materials , 1988 .

[4]  G. R. Wilson,et al.  Windblown dust on Mars: laboratory simulations of flux as a function of surface roughness , 2000 .

[5]  K. J. Reid,et al.  Preparation of Simulants for Lunar Surface Materials , 1990 .

[6]  Richard V. Morris,et al.  JSC MARS-1: A Martian Soil Simulant , 1998 .

[7]  Alessandro Maturilli,et al.  Emissivity measurements of analogue materials for the interpretation of data from PFS on Mars Express and MERTIS on Bepi-Colombo , 2006 .

[8]  Simulations of the magnetic properties experiment on Mars Exploration Rovers , 2006 .

[9]  William M. Grundy,et al.  Visible/near-infrared spectrogoniometric observations and modeling of dust-coated rocks , 2004 .

[10]  Stewart W. Johnson,et al.  Engineering, Construction, and Operations in Space , 1990 .

[11]  Per Nornberg,et al.  Simulation of the Martian dust aerosol at low wind speeds , 2002 .

[12]  A. McEwen,et al.  Morphology and Composition of the Surface of Mars: Mars Odyssey THEMIS Results , 2003, Science.

[13]  D. Mckay,et al.  Workshop on Production and Uses of Simulated Lunar Materials , 1991 .

[14]  Stein Sture,et al.  Mechanical Properties of JSC-1 Lunar Regolith Simulant , 1996 .

[15]  Angioletta Coradini,et al.  MERTIS - A Thermal Infrared Imaging Spectrometer for the Bepi-Colombo Mission , 2005 .

[16]  N. Kömle,et al.  A model of the thermal conductivity of porous water ice at low gas pressures , 1991 .

[17]  K. Kinch,et al.  Preliminary analysis of the MER magnetic properties experiment using a computational fluid dynamics model , 2006 .

[18]  T. Spohn,et al.  A heat flow and physical properties package for the surface of Mercury , 2001 .

[19]  B. Voelker,et al.  Hydroxyl radical production via the photo-Fenton reaction in the presence of fulvic acid. , 2003, Environmental science & technology.

[20]  M. Mellon,et al.  Mars Global Surveyor Thermal Emission Spectrometer experiment: Investigation description and surface science results , 2001 .

[21]  Bernard H. Foing,et al.  Amino acid photostability on the Martian surface , 2005 .

[22]  N. Thomas,et al.  Visible/NIR photometric signatures of liquid water in Martian regolith simulant , 2007 .

[23]  W. D. Carrier,et al.  Lunar Simulants: JSC-1 is Gone; The Need for New Standardized Root Simulants , 2004 .

[24]  Alessandro Maturilli,et al.  The Berlin emissivity database (BED) , 2008 .

[25]  Giuseppe A. Marzo,et al.  MIMA: Mars Infrared MApper - The Fourier spectrometer for the ESA Pasteur/ExoMars rover mission , 2006 .

[26]  Andrew Steele,et al.  Searching for life on Mars: selection of molecular targets for ESA's aurora ExoMars mission. , 2007, Astrobiology.

[27]  David S. McKay,et al.  The Nature of Lunar Soil: Considerations for Simulants , 2004 .

[28]  Mark A. Sephton,et al.  Mars on Earth: soil analogues for future Mars missions , 2008 .

[29]  Tilman Spohn,et al.  Line heat-source measurements of the thermal conductivity of porous H2O ice, CO2 ice and mineral powders under space conditions , 1996 .

[30]  Günter Kargl,et al.  A NEW METHOD FOR THE DETERMINATION OF THERMAL CONDUCTIVITY AND THERMAL DIFFUSIVITY FROM LINEAR HEAT SOURCE MEASUREMENTS , 1997 .

[31]  Jeffrey R. Johnson,et al.  Soils of Eagle Crater and Meridiani Planum at the Opportunity Rover Landing Site , 2004, Science.

[32]  The Enigma of the Martian Soil , 2005, Science.

[33]  R. Jaumann,et al.  Context for the ESA ExoMars rover: the Panoramic Camera (PanCam) instrument , 2006, International Journal of Astrobiology.

[34]  R. J. Reid,et al.  Mineralogic and compositional properties of Martian soil and dust: Results from Mars Pathfinder , 2000 .

[35]  James Garry,et al.  Analysis and survival of amino acids in Martian regolith analogs , 2006 .

[36]  Tilman Spohn,et al.  Cometary ice texture and the thermal evolution of comets , 1995 .

[37]  T. Spohn,et al.  Thermal histories of the KOSI samples , 1991 .

[38]  W. Harwood,et al.  Frost-weathering on Mars: Experimental evidence for peroxide formation , 1979, Journal of Molecular Evolution.

[39]  B. Hapke Theory of reflectance and emittance spectroscopy , 1993 .

[40]  Pascale Ehrenfreund,et al.  Detection and characterization of oxidizing acids in the Atacama Desert using the Mars Oxidation Instrument , 2005 .

[41]  R. Craddock,et al.  Thermal conductivity measurements of particulate materials: 3. Natural samples and mixtures of particle sizes , 2006 .

[42]  Philip R. Christensen,et al.  Thermal conductivity measurements of particulate materials 1. A review , 1997 .

[43]  J. Oró,et al.  The photolytic degradation and oxidation of organic compounds under simulated Martian conditions , 1979, Journal of Molecular Evolution.

[44]  Lutz Richter,et al.  Inferences of strength of soil deposits along MER Rover Traverses and Comparisons with remotely-sensed Surface Properties , 2005 .

[45]  A. Zöhrer,et al.  Finite Element Modelling of Penetration Tests into Martian analogue Materials 27 June - 1 July 2005, Anavyssos, Attica, Greece , 2006 .

[46]  Richard A. Mathies,et al.  Sulfate minerals and organic compounds on Mars , 2006 .

[47]  Karen M. Jager,et al.  Martian Regolith Simulant JSC Mars-1 , 1998 .

[48]  L. N. Matveeva,et al.  The missing organic molecules on Mars. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[49]  C. Stoker,et al.  Organic degradation under simulated Martian conditions. , 1997, Journal of geophysical research.

[50]  C. McKay,et al.  The Chemical Reactivity of the Martian Soil and Implications for Future Missions , 1994 .

[51]  G. Reitz,et al.  EXOMARS IRAS (DOSE) radiation measurements. , 2007 .

[52]  David Crisp,et al.  The planetary fourier spectrometer (PFS) onboard the European Venus Express mission , 2005 .

[53]  J. Bell,et al.  New composite reflectance spectra of Mars from 0.4 to 3.14 μm , 1994 .

[54]  D. Möhlmann,et al.  Water in the upper martian surface at mid- and low-latitudes: presence, state, and consequences , 2004 .

[55]  P H Smith,et al.  Textures of the soils and rocks at Gusev Crater from Spirit's Microscopic Imager. , 2004, Science.

[56]  U. Schwertmann,et al.  Mineralogy of a burned soil compared with four anomalously red Quaternary deposits in Denmark , 2004, Clay Minerals.

[57]  D. Thomas,et al.  Wind as a Geological Process on Earth, Mars, Venus and Titan , 1988 .

[58]  Roland Siegwart,et al.  The ExoMars rover and Pasteur payload Phase A study: an approach to experimental astrobiology , 2006 .

[59]  P. Christensen,et al.  Thermal conductivity measurements of particulate materials 2. Results , 1997 .

[60]  C. Walling Fenton's reagent revisited , 1975 .

[61]  M. Hecht,et al.  Evidence that the reactivity of the martian soil is due to superoxide ions. , 2000, Science.

[62]  Jonathan Merrison,et al.  The electrical properties of Mars analogue dust , 2004 .

[63]  Judith H. Allton,et al.  JSC-1: A New Lunar Regolith Simulant , 1993 .

[64]  R. Greeley Silt-clay aggregates on Mars , 1979 .

[65]  R J Sullivan,et al.  Wind-Related Processes Detected by the Spirit Rover at Gusev Crater, Mars , 2004, Science.

[66]  Jorge L. Vago,et al.  Upcoming Science Activities in Support of ESA's ExoMars Mission , 2007 .

[67]  Stephan Ulamec,et al.  GEP-Exomars: A Geophysics and Environment Observatory on Mars , 2006 .

[68]  D. Ming,et al.  Localization and Physical Properties Experiments Conducted by Spirit at Gusev Crater , 2004, Science.