Preparation of analyte-sensitive polymeric supports for biochemical sensors.

[1]  K. Booksh,et al.  Sensitive and real-time fiber-optic-based surface plasmon resonance sensors for myoglobin and cardiac troponin I. , 2004, Talanta.

[2]  Akira Baba,et al.  Optical properties of ultrathin poly(3,4-ethylenedioxythiophene) films at several doping levels studied by in situ electrochemical surface plasmon resonance spectroscopy , 2003 .

[3]  Toshihiko Imato,et al.  Modification of a Thin Gold Film with Boronic Acid Membrane and Its Application to a Saccharide Sensor Based on Surface Plasmon Resonance , 2003 .

[4]  D. Grebenkov,et al.  Study of Relaxation in Micellar Solution by the Numerical Experiment , 2003 .

[5]  Fredrik Höök,et al.  Characterization of DNA immobilization and subsequent hybridization on a 2D arrangement of streptavidin on a biotin-modified lipid bilayer supported on SiO2. , 2003, Analytical chemistry.

[6]  G. Robertson,et al.  Evaluation of the recognition ability of molecularly imprinted materials by surface plasmon resonance (SPR) spectroscopy , 2003 .

[7]  S. Moghimi,et al.  Real‐time evidence of surface modification at polystyrene lattices by poloxamine 908 in the presence of serum: in vivo conversion of macrophage‐prone nanoparticles to stealth entities by poloxamine 908 , 2003, FEBS letters.

[8]  J. Hoheisel,et al.  Solid supports for microarray immunoassays , 2003, Journal of molecular recognition : JMR.

[9]  W. Knoll,et al.  Surface plasmon resonance studies of protein binding on plasma polymerized di(ethylene glycol) monovinyl ether films , 2003 .

[10]  P. Somasundaran,et al.  Polymer surfactant kinetics using surface plasmon resonance spectroscopy dodecyltrimethylammonium chloride/polyacrylic acid system. , 2003, Journal of colloid and interface science.

[11]  B. Sébille,et al.  The reversible binding of hydrophobically end-capped poly(ethylene glycol)s to poly-β-cyclodextrin-coated gold surfaces: a surface plasmon resonance investigation , 2003 .

[12]  J L West,et al.  A whole blood immunoassay using gold nanoshells. , 2003, Analytical chemistry.

[13]  Ravi S Kane,et al.  Using bifunctional polymers presenting vancomycin and fluorescein groups to direct anti-fluorescein antibodies to self-assembled monolayers presenting d-alanine-d-alanine groups. , 2003, Journal of the American Chemical Society.

[14]  Sergio Mendez,et al.  Thermal Response of Poly(N-isopropylacrylamide) Brushes Probed by Surface Plasmon Resonance. , 2003, Langmuir : the ACS journal of surfaces and colloids.

[15]  George M. Whitesides,et al.  Synthesis of Free-Standing Quasi-Two-Dimensional Polymers , 2003 .

[16]  Bo Mattiasson,et al.  Binding of Cu(II)-poly (N-isopropylacrylamide/vinylimidazole) copolymer to histidine-tagged protein: A surface plasmon resonance study , 2003 .

[17]  A. Artyukhin,et al.  Polyelectrolyte Adsorption onto a Surface-Confined Surfactant , 2003 .

[18]  Kyoung-Yong Chun,et al.  Polymer adsorption on nanoheterogeneous surfaces: Impact of size and density of heterogeneous sites , 2003 .

[19]  Vinay Gupta,et al.  Adsorption of a polyelectrolyte on surfaces with nanometer sized chemical patchiness , 2003 .

[20]  Michael Himmelhaus,et al.  Covalent Coupling of Antibodies to Self-Assembled Monolayers of Carboxy-Functionalized Poly(ethylene glycol): Protein Resistance and Specific Binding of Biomolecules† , 2003 .

[21]  K. Kataoka,et al.  Surface plasmon resonance study on the interaction between lactose-installed poly(ethylene glycol)-poly(D, L-lactide) block copolymer micelles and lectins immobilized on a gold surface , 2002 .

[22]  G. Prestwich,et al.  Hyaluronic acid-N-hydroxysuccinimide: a useful intermediate for bioconjugation. , 2001, Bioconjugate chemistry.

[23]  M. Davies,et al.  A Simple Method for Biocompatible Polymer Based Spatially Controlled Adsorption of Blood Plasma Proteins to a Surface , 2001 .

[24]  Catherine Picart,et al.  Buildup Mechanism for Poly(l-lysine)/Hyaluronic Acid Films onto a Solid Surface , 2001 .

[25]  P. Schuck,et al.  Adaptation of a surface plasmon resonance biosensor with microfluidics for use with small sample volumes and long contact times. , 2001, Analytical chemistry.

[26]  D. Kipke,et al.  Calcium alginate gel: a biocompatible and mechanically stable polymer for endovascular embolization. , 2001, Journal of biomedical materials research.

[27]  B. Liedberg,et al.  A high-density poly(ethylene glycol) polymer brush for immobilization on glass-type surfaces. , 2000, Biosensors & bioelectronics.

[28]  Andrea A. Mencaglia,et al.  Polymer-coated optical fibres for application in a direct evanescent wave immunoassay , 2000 .

[29]  Karl S. Booksh,et al.  Tuning Dynamic Range and Sensitivity of White-Light, Multimode, Fiber-Optic Surface Plasmon Resonance Sensors , 1999 .

[30]  Graham Ramsay,et al.  Commercial biosensors : applications to clinical, bioprocess, and environmental samples , 1998 .

[31]  Robert M. Corn,et al.  Covalent Attachment and Derivatization of Poly(l-lysine) Monolayers on Gold Surfaces As Characterized by Polarization−Modulation FT-IR Spectroscopy , 1996 .

[32]  S. Lofas Dextran modified self-assembled monolayer surfaces for use in biointeraction analysis with surface plasmon resonance , 1995 .

[33]  S. Loefas,et al.  Immobilization of proteins to a carboxymethyldextran-modified gold surface for biospecific interaction analysis in surface plasmon resonance sensors. , 1991, Analytical biochemistry.

[34]  H. Raether Surface Plasmons on Smooth and Rough Surfaces and on Gratings , 1988 .