Molecular asymmetry in extraterrestrial organic chemistry: An analytical perspective

Abstract The enantiomeric excesses determined for eight amino acids and one hydroxy acid of carbonaceous chondrite meteorites represent to date the only case of molecular asymmetry measured outside the biosphere. Because of the chiral homogeneity of life’s structures and functions, the findings have been debated for the possible relevance that a-biotic chiral symmetry-breaking might have had in the origin of terrestrial homochirality. While the many unknowns surrounding the origin of life have inevitably hindered the inquiries raised in this discourse, the hypotheses put forward in regard to the origin of extraterrestrial chiral asymmetry, which is a defined physico-chemical phenomenon, have been approached analytically and their scrutiny has aided the understanding of pre-biotic chemical evolution. We report here on our current knowledge of the asymmetric effects that could have influenced the chiral symmetry breaking of molecules in cosmochemical environments and how they correlate with the data obtained from meteorite analyses. We also address recent proposals that aqueous processes might have influenced the chirality of amino acids in meteorites and show that the crystallization behavior of isovaline, the most abundant non-racemic amino acid in the Murchison meteorite, excludes its attainment of enantiomeric excesses via phase changes such as crystallization or sublimation.

[1]  Harry Y. McSween,et al.  Meteorites and the early solar system II , 2006 .

[2]  K. Soai,et al.  Asymmetric Synthesis of an Organic Compound with High Enantiomeric Excess Induced by Inorganic Ionic Sodium Chlorate , 2000 .

[3]  S. Weinberg,et al.  Breaking chiral symmetry , 1968 .

[4]  J. Holloway,et al.  Organic molecules formed in a “primordial womb” , 2005 .

[5]  Kenso Soai,et al.  The distribution of chiral asymmetry in meteorites: An investigation using asymmetric autocatalytic chiral sensors , 2006 .

[6]  S. Pizzarello,et al.  Non-racemic amino acids in the Murray and Murchison meteorites. , 2000, Geochimica et cosmochimica acta.

[7]  Kenso Soai,et al.  Spontaneous absolute asymmetric synthesis in the presence of achiral silica gel in conjunction with asymmetric autocatalysis. , 2006, Chirality.

[8]  J. Cronin Acid-labile amino acid precursors in the Murchison meteorite , 1976, Origins of life.

[9]  Y. Hayashi,et al.  Stereoselective synthesis of key (η6-arene)Cr(CO)3 complexes to acorenone and acorenone B , 1986 .

[10]  M. Gargaud,et al.  Lectures in astrobiology , 2005 .

[11]  Daniel P. Glavin,et al.  Enrichment of the amino acid l-isovaline by aqueous alteration on CI and CM meteorite parent bodies , 2009, Proceedings of the National Academy of Sciences.

[12]  H. Oshima n−π Absorption Spectra of Some Aliphatic Aldehydes , 1961 .

[13]  H. Morowitz A mechanism ffr the amplification of fluctuations in racemic mixtures. , 1969, Journal of theoretical biology.

[14]  K. Kvenvolden,et al.  Evidence for Extraterrestrial Amino-acids and Hydrocarbons in the Murchison Meteorite , 1970, Nature.

[15]  M. Klussmann,et al.  Spoilt for choice: assessing phase behavior models for the evolution of homochirality. , 2007, Chemical communications.

[16]  K. Soai,et al.  d- and l-Quartz-Promoted Highly Enantioselective Synthesis of a Chiral Organic Compound , 1999 .

[17]  J. Reisse,et al.  Chirality and the Origin of Homochirality , 2005 .

[18]  R. Fasel,et al.  Amplification of chirality in two-dimensional enantiomorphous lattices , 2006, Nature.

[19]  S. Pizzarello,et al.  The deuterium enrichment of individual amino acids in carbonaceous meteorites: A case for the presolar distribution of biomolecule precursors , 2005 .

[20]  S. Macko,et al.  Isotopic evidence for extraterrestrial non- racemic amino acids in the Murchison meteorite , 1997, Nature.

[21]  R. Lemmon Chemical Evolution , 1972, Nature.

[22]  Y Yamagata,et al.  A hypothesis for the asymmetric appearance of biomolecules on earth. , 1966, Journal of theoretical biology.

[23]  J. P. Cosyn,et al.  Photochemistry with circularly polarised light. II) Asymmetric synthesis of octa and nonahelicene. , 1971 .

[24]  Kenso Soai,et al.  Enantioselective synthesis of near enantiopure compound by asymmetric autocatalysis triggered by asymmetric photolysis with circularly polarized light. , 2005, Journal of the American Chemical Society.

[25]  Chen Ning Yang,et al.  Question of Parity Conservation in Weak Interactions , 1956 .

[26]  D. D. Hoppes,et al.  Experimental Test of Parity Conservation in Beta Decay , 1957 .

[27]  Laurence D. Barron,et al.  Molecular Light Scattering and Optical Activity: Second Edition, revised and enlarged , 1983 .

[28]  J. Cronin,et al.  Linear and cyclic aliphatic carboxamides of the Murchison meteorite: hydrolyzable derivatives of amino acids and other carboxylic acids. , 1995, Geochimica et cosmochimica acta.

[29]  R. Bentley Chiral: a confusing etymology. , 2010, Chirality.

[30]  J. Ferris,et al.  Oligomerization of ribonucleotides on montmorillonite: reaction of the 5'-phosphorimidazolide of adenosine. , 1992, Science.

[31]  J. M. Hollis,et al.  Green Bank Telescope Detection of New Interstellar Aldehydes: Propenal and Propanal , 2004 .

[32]  Alec Moradpour,et al.  Preparation of chiral compounds with high optical purity by irradiation with circularly polarized light, a model reaction for the prebiotic generation of optical activity , 1974 .

[33]  Kenso Soai,et al.  Asymmetric synthesis of pyrimidyl alkanol without adding chiral substances by the addition of diisopropylzinc to pyrimidine-5-carbaldehyde in conjunction with asymmetric autocatalysis , 2003 .

[34]  T. Tornabene,et al.  Bacterial Contamination of Some Carbonaceous Meteorites , 1965, Science.

[35]  Dieter Becker,et al.  Aib and Iva in the Biosphere: Neither Rare nor Necessarily Extraterrestrial , 2009, Chemistry & biodiversity.

[36]  Julie Ziffer,et al.  Water ice and organics on the surface of the asteroid 24 Themis , 2010, Nature.

[37]  N. Baranova,et al.  Electrical analog of the Faraday effect and other new optical effects in liquids , 1977 .

[38]  Martin Quack,et al.  How important is parity violation for molecular and biomolecular chirality? , 2002, Angewandte Chemie.

[39]  J. Jedwab La magnétite de la météorite d'Orgueil vue au microscope électronique à balayage , 1971 .

[40]  J. Hough,et al.  Circular polarization in star-formation regions: implications for biomolecular homochirality. , 1998, Science.

[41]  Hiroshi Iwamura,et al.  Thermodynamic control of asymmetric amplification in amino acid catalysis , 2006, Nature.

[42]  S. Pizzarello,et al.  Enantiomeric Excesses in Meteoritic Amino Acids , 1997, Science.

[43]  W. Bonner,et al.  Asymmetric photolysis of (RS)-leucine with circularly polarized ultraviolet light. , 1977, Journal of the American Chemical Society.

[44]  Faïza Bergaya,et al.  Handbook of clay science , 2006 .

[45]  Michael E. Zolensky,et al.  Nonracemic isovaline in the Murchison meteorite : Chiral distribution and mineral association , 2003 .

[46]  Kenso Soai,et al.  Asymmetric autocatalysis and amplification of enantiomeric excess of a chiral molecule , 1995, Nature.

[47]  B. Feringa,et al.  An astrophysically-relevant mechanism for amino acid enantiomer enrichment. , 2007, Chemical communications.

[48]  G. Wagnière THE MAGNETOCHIRAL EFFECT AND RELATED OPTICAL PHENOMENA , 1999 .

[49]  P. Buseck,et al.  Unusual forms of magnetite in the Orgueil carbonaceous chondrite , 1998 .

[50]  S. Pizzarello,et al.  The carbon isotopic distribution of Murchison amino acids , 2004 .

[51]  G. Rikken,et al.  Enantioselective magnetochiral photochemistry , 2000, Nature.

[52]  I. Weissbuch,et al.  Aspects of spontaneous separation of enantiomers in two- and three-dimensional crystals , 1998 .

[53]  S. Shinkai,et al.  Highly enantioselective synthesis of organic compound using right- and left-handed helical silica , 2003 .

[54]  W. Bonner,et al.  Supernovae and life , 1983, Nature.

[55]  S. Pizzarello,et al.  Nitrogen-containing compounds in two CR2 meteorites: 15N composition, molecular distribution and precursor molecules , 2009 .

[56]  L. Barron,et al.  Magneto-chiral birefringence and dichroism , 1984 .

[57]  S. Pizzarello,et al.  A comparative study of the hydroxy acids from the Murchison, GRA 95229 and LAP 02342 meteorites , 2010 .

[58]  S. Pizzarello,et al.  Amino acids in meteorites. , 1983, Advances in space research : the official journal of the Committee on Space Research.

[59]  Gerhard Eckel,et al.  High molecular diversity of extraterrestrial organic matter in Murchison meteorite revealed 40 years after its fall , 2010, Proceedings of the National Academy of Sciences.

[60]  D. Kondepudi,et al.  Chiral Symmetry Breaking in Sodium Chlorate Crystallizaton , 1990, Science.

[61]  Dilip K. Kondepudi,et al.  Chiral Symmetry Breaking in Stirred Crystallization of 1,1‘-Binaphthyl Melt , 1999 .

[62]  S. Pizzarello,et al.  Molecular asymmetry in extraterrestrial chemistry: Insights from a pristine meteorite , 2008, Proceedings of the National Academy of Sciences.

[63]  G. Tsoucaris,et al.  Photochemistry with circularly polarized light. Synthesis of optically active hexahelicene , 1971 .

[64]  G. Rikken,et al.  Observation of magneto-chiral dichroism , 1997, Nature.

[65]  S. Pizzarello,et al.  Alanine enantiomers in the Murchison meteorite , 1998, Nature.

[66]  A. Canillas,et al.  Chiral Biases in Solids by Effect of Shear Gradients: A Speculation on the Deterministic Origin of Biological Homochirality , 2009, Origins of Life and Evolution of Biospheres.

[67]  G. Wagnière,et al.  Difference in the absorption coefficient of enantiomers for arbitrarily polarized light in a magnetic field: A possible source of chirality in molecular evolution , 1983, Experientia.

[68]  L D Barron,et al.  Can a magnetic field induce absolute asymmetric synthesis? , 1994, Science.

[69]  H. Onuki,et al.  Mechanism of pH-dependent photolysis of aliphatic amino acids and enantiomeric enrichment of racemic leucine by circularly polarized light. , 2001, Organic letters.

[70]  G. Rikken,et al.  Strong magneto-chiral dichroism in enantiopure chiral ferromagnets. , 2008, Nature materials.

[71]  K. Ernst Amplification of Chirality at Solid Surfaces , 2010, Origins of Life and Evolution of Biospheres.

[72]  D. Blackmond,et al.  Evolution of solid phase homochirality for a proteinogenic amino acid. , 2008, Journal of the American Chemical Society.

[73]  L. Barron Chemistry: Chirality, magnetism and light , 2000, Nature.

[74]  G. J. Flynn,et al.  The Nature and Distribution of the Organic Material in Carbonaceous Chondrites and Interplanetary Dust Particles , 2006 .