APPOS: An adaptive partial occlusion segmentation method for multiple vehicles tracking

[1]  Dorin Comaniciu,et al.  Real-time tracking of non-rigid objects using mean shift , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[2]  Dorin Comaniciu,et al.  Mean shift and optimal prediction for efficient object tracking , 2000, Proceedings 2000 International Conference on Image Processing (Cat. No.00CH37101).

[3]  Michael Harville,et al.  Adaptive video background modeling using color and depth , 2001, Proceedings 2001 International Conference on Image Processing (Cat. No.01CH37205).

[4]  Michael Isard,et al.  BraMBLe: a Bayesian multiple-blob tracker , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[5]  L. Gool,et al.  Probabilistic object tracking using multiple features , 2004, ICPR 2004.

[6]  Yan Huang,et al.  Tracking multiple objects through occlusions , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[7]  J. Peponis Formulation , 1997, Karaite Marriage Contracts from the Cairo Geniza.

[8]  Ramakant Nevatia,et al.  Detection and Tracking of Multiple, Partially Occluded Humans by Bayesian Combination of Edgelet based Part Detectors , 2007, International Journal of Computer Vision.

[9]  Bo Hu,et al.  Occlusion Detection and Tracking Method Based on Bayesian Decision Theory , 2006, PSIVT.

[10]  Sharath Pankanti,et al.  Appearance models for occlusion handling , 2006, Image Vis. Comput..

[11]  A. Ali,et al.  Object Tracking using Correlation, Kalman Filter and Fast Means Shift Algorithms , 2006, 2006 International Conference on Emerging Technologies.

[12]  Wei Huang,et al.  Detection and tracking of multiple moving objects in video , 2007, VISAPP.

[13]  Juan R. Torregrosa,et al.  Handling occlusion in optical flow algorithms for object tracking , 2008, Comput. Math. Appl..

[14]  Kenji Terada,et al.  A framework for Human tracking using Kalman filter and fast mean shift algorithms , 2009, 2009 IEEE 12th International Conference on Computer Vision Workshops, ICCV Workshops.

[15]  Shihong Lao,et al.  Multi-object tracking through occlusions by local tracklets filtering and global tracklets association with detection responses , 2009, CVPR.

[16]  H. Ai,et al.  Multi-object tracking through occlusions by local tracklets filtering and global tracklets association with detection responses , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[17]  Mingjun Wu,et al.  Segmenting and tracking multiple objects under occlusion using multi-label graph cut , 2010, Comput. Electr. Eng..

[18]  K. S. Venkatesh,et al.  Formulation, detection and application of occlusion states (Oc-7) in the context of multiple object tracking , 2011, 2011 8th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS).

[19]  Junzhou Huang,et al.  Robust tracking using local sparse appearance model and K-selection , 2011, CVPR 2011.

[20]  Yi Yang,et al.  Weakly Supervised Photo Cropping , 2014, IEEE Transactions on Multimedia.

[21]  Na Zhao,et al.  Learning for classification of traffic-related object on RGB-D data , 2014, Multimedia Systems.

[22]  Yue Gao,et al.  Representative Discovery of Structure Cues for Weakly-Supervised Image Segmentation , 2014, IEEE Transactions on Multimedia.

[23]  Yi Yang,et al.  A Probabilistic Associative Model for Segmenting Weakly Supervised Images , 2014, IEEE Transactions on Image Processing.

[24]  Yue Gao,et al.  Feature Correlation Hypergraph: Exploiting High-order Potentials for Multimodal Recognition , 2014, IEEE Transactions on Cybernetics.

[25]  Luming Zhang,et al.  Vehicles overtaking detection using RGB-D data , 2015, Signal Process..

[26]  Xuelong Li,et al.  A Fine-Grained Image Categorization System by Cellet-Encoded Spatial Pyramid Modeling , 2015, IEEE Transactions on Industrial Electronics.

[27]  Luming Zhang,et al.  Integrating 3D structure into traffic scene understanding with RGB-D data , 2015, Neurocomputing.

[28]  Yi Yang,et al.  Weakly Supervised Human Fixations Prediction , 2016, IEEE Transactions on Cybernetics.